ARYAN SCHOOL OF ENGINEERING \& ECHNOLOGY

 BARAKUDA, PANCHAGAON, BHUBANESWAR, KHORDHA-752050

LECTURE NOTE

SUBJECT NAME- RAILWAY \& BRIDGE ENGINEERING BRANCH-CIVIL ENGG.

SEMESTER-5 ${ }^{\text {TH }}$ SEM
ACADEMIC SESSION-2022-23
PREPARED BY- DIBYAJYOTI NAYAK

Terminology:-
Ballast:-- Ballast is the granular material packed under and around the sleepers to transber loads from sleepers to bella. It helps in providing elasticity to the track.
Ballast Crib: The loose ballast between the two adjacent sleepers is known as "ballast crib".
Bearing plates:- To reduce the intensity of pressure, particularly on soft variety of sleepers, a rectangular plate of mild steel or cast iron is introduced between the rath and the sleepers. This plate is called bearing plate. It distributes the load overs o large area of timber sleepers.
Blocks: To provide the required gap between the two rails, steel pieces called blocks or Heel blocks' are used. Such blocks are used between main rails and check or ground rack
Boxing: The process of filling the ballast around the sleeper is called boxing of the ballast. This ballast boxes the sleeper.
Broad Gauge: The gauge of a track in which the distance between the running faces of two track rails is 1.676 meters it termed as Broad Gauge.
Buckling of Rails: The railway track gets out of the original position due to buckling if the expansion of rail due to rise in temperature is prevented during not weather. This is known as buckling due to rise in temperature rails.
Bull Headed Rails: (B.H. Rads) B.H. Rails are those in which head is made little thicker and stronger than lower pard i.e. boot by adding more metal at the top.
Cant 'or' Superelevation.- On curves, to counteract the effect of centratuga Force, the level of outer rail is raised above the inner rat by a certain amount. This raising of outer rail over the inner rail, called superelevation ore cant.
Cant Deficiency. The equilibrium cant is provided on the basis of the average speed of ditterent trains on the track. This equilibrium cant or superelevation will tall short of that required for speeds higher than average oped. This shortage ob cant is called cant deficiency.
chairs: C.I. chairs are used to hold the bull-headed and double.heade rails. These chairs are boxed to sleepers by round spikes.
check rails: check rails are provided on the opposite side of the crossing locations for guiding one wheel of the vehicles and thus to check the tendency of another-wheel to climb over the crossing.

Coaches or Vehicles:- The passenger compartments are called coaches They are meant for sitting and sleeping of passenger. Latruns and washing bacitifies are provided in coaches. They are welted lighted, Its class coaches have more combortable seats and better amenities wan and class coaches, Now-a-days even airl-condition coaches are also used.
Coning of wheel: The wheels are coned at a slope of 1 in 20 to prevem from rubbing the inside tace of the rail head and to preveout latetial movement of the axle with its wheels. This is known as coning of wheels
Creep of Rails: (reep is the longitudinal movement of rails in a trocar. It occurs due to several reasons. The effect of creep tends to drag the track if ballast is insufficient to hold the rails.
Crossing clearance: The clear distance between the wing rail and the crossing rail is known as crossing clearance. This clearances theoreticany same as clearance at the +riroat but in practice it is slightly greater than at the throat.
crossing Number: The number of crossing is defined as the rato of spread to the length of crossings are designated by this number i.e. CH:
Crossing stations: In a single line system, the stations at which up and down trains can pass each ot here are called crossing station. Cutting: When the ground has to be cut, it is called cutting. Cutting:" termed as shallow cutting when the depth is 3 mor less and is called deep cutting when depth is more than 3 m .
Double headed Rails: These are the rats which have do ruble headed. The bottom and top of the rats are of the same crose-section. Drop pits: They are rectangular drop pits in which wheels of the locomotive are token out robot rupaine.
Embankments. The raised structure above the ground level for carrying the railway track is called embankment. When height of the embarkment is more, the sides steepens are stepped for better stability of slopes.
Equilibrium Cant or Superelevation: if the cant or superelevation on the curved track is provided on the basis of Average or Equetibriun sped of the trains running over that section, then such a cant is called Facing directions: A point is called a facing points when a train runs in facing direction only. Th this case, the wheels pass over the switches first and then over the crossing.

Fishplates: These plates, resembling in shape of to a fish, are used to proviso the continuity between the two rails at the rail-jointe. They also provide the required gap for expansion and contraction if rails due to tempenaters variations. They are made of steel.
Flangeway clearance: This is the distance between the adjacent paces of the stock rails or running rails and the check or guard rails. It is provided for free movement of the wheel flanges.
Flangeway Depth:- If is the vertical distance between the top suactace to the running rails no or stock rails top to the surface of the heel block which is used between stock rail and the check rail. Flare: If is the gradual or tapered widening to the fpangeway which is formed by bending and splaying the end of check $r a i l$ or wing rail away from the gauge tine.
F.F. Rails: F. F. Rails have wider ore flatter bottom, so that they can be fixed directly on the sleeper, avoiding the necessity of chairs. They are also called V ignole's rails.
Formation:: Formation is the prepared subgrade ready to receive the ballast.
Gauge:. The gauge of a track in India is measured as the minimum distance between the inner running or gauge faces of the two rails. Gradient: Any departure of the railway track from the level is known ar grade or gradient. If is called an upgiadient when the track irises in the direction of motion and a down gradient when track balls below in the direction of movement.
Grade compensation: The amount of gradient is reduced, wherever a curve and gradient have to be provided together. The reduction in grade is known as grade compensation on curves.
Guard Rails:. Guardrails are extra rails provided over e bridges to prevent damage and danger in case of derailment occuring on the bridges.
Heel:- Tapered rails at location where they are fixed to the main rates is called Heel.
Heel Divergence:- Heel Divergence is the distance between the running faces of the stock raid, i.e. gauge faces of stock rat and gauges faces of the tongue raid?, when measured at the heel of the switch.
Hogged Rails:- Those rails which get battered due to impact action of wheels over the end of the rails are called hogged rails. These rats get bent down and deflected at the ends.

Keys:- Keys are the tapered pieces of timber or steel to box the rails to the chairs on metal sleepers.
Kinks: The lateral movement of the ends of the rails out of its original position due to several cause such as loose joint, defective gauge etc. from shoulders, are called kinks.
Lead or Grossing Lead:- It is the distance from the heel of the switch to the Theoretical Nose of Crossing (T.N.C.), the distance being measured along the straight.
Leffitand Turnout:- A turnout is called a left hand ter nope when the directions is towards the left of the main track in taang direction,
Level crossing: When a raitwayline and a road cross eachother at the same level, it is called a level crossing.
Locomotive: It is a machine which transfers chemical energy of fuel into mechanical energy of motion. Fuel may be water and coal or diesel a electricity.

Steam Locomotives are designated by the type and number of wheel: such as 4-6-2 type locomotive
Metal sleepers: Sleepers made of cast iron or steel are called metalsleep C.S.T. 9 sleeper is most commonly used on Indian Railway.

Metre Gauge: The gauge of a track in which distance between the cunning traces of two track rails is one metre.
Momentum Gradient:- If is the rising gradient, which takes advantages of a balling gradient in developing the momentum and kinetic energy to negotiate this rising gradient.
Narrow Gauge. The gauge of track in which the distance between the running baces of two track is either 0.762 metre ar 0.67 meter.
Negative Cant or Negative Superelevation:
When the turnout or branch lines off from a mainline on the curve on the opposite side, then at a point from where both the track bifurcate or diverge, it is not passible to provide cant for both the tracks at the same place. In such cases, on the branch line where the outer rail is below the inner rail is said to have negative cantor superelevation.
Packing. The process of ramming the ballast underneath the sleeper is known as (packing)
Permanent Tract: If is the track which is of permanent natrere and handle the normal commercial traffic for which it is meant. It is also called permanent way.
platform:- A raised level surface from where passengers board and alight from trains of the stations is called platboim.
Points and crossings: Points, Crossinge, cross-overe and turnout, etc. ar l contrivances or arrangement by which different routes either paitalle in
diverging are connected to afford bor the train to move from one track to another
Pusher Gradient:- The gradient which requires one or more additional promotives for hauling the load over the rising gradient is called a pusher gradient.
Rails. Rails are steel girders which provide the hard and smooth surface for movement of wheels of a locomotive and railway vehicles. Railway Engineering:

Railway engineering is that branch of civil engineering which deals with the construction and mainly nance of the railway track for sable and efficient movement of traces on it.
Railway Track. Railway track is the structure provided by raids fitted on sleepers, resting on ballast and subgrade for passage of wheels.
Railway Zones: For improved operations and administration, the Indian Railway have been divided into a zones viz-Southeien, Centical, Western Northern, North-Eastern, Eastern, South Eastern, North-East Frontier and South Cervical.
Relaying of Tracks: changing of rails, sleepers and bitting is called
relaying of track. Ruling gradient: If is the max gradient rising gradient which is
provided keeping in view the poser of the locomotul provided keeping in view the powder of the locomotive
Siding. When a branch starting from a main line terminates at a dead end with a butter stop or sand hump, it ic known as a siding. sleepers: sleepers are the members laid transversely under the rave which are meant to support the rails over them and transfer the load from
rails to ballast.
Sleeper Crib: A track ic temporarily supported for repairs and alteration work by girders, piers, etc. over a stack of timber sleepers called sleeper crib. This is adopted on small bridges and culverts where dry bed is available Sleeper Density Sleeper density represent e the number of sleeper n per rail length in meters
stock Rail: The position of the straight alignment against which the torque rats fits is known as the stock rath.
Studes: - These are bent plater byes between the stock rail and tongue rat to prevent the lateral bending of the tongue rail. They are tilted to the web of the stock rails by bore.
Switch: A switch consists of a stock rail and a tongue rat. Soothes are tapered rails with the thicket end known as the heels, foxed to the main track while thinner end known as the toe is kept movable. Switch angle. This is the angle formed between the running face. of stock rail and tongue rat.

Through packing. It is the process of pack replacing the whole track periodically to maintain it in good running condwion which otherwise gets disturbed by moving traffic. This through packing is done on programme basis taking the precaution that on each day only that portion should be opened which can be effectively repacked before closing the work on that day.
Terminal station: stations at which the continuity ob a main line terminates is called a terminal stations.
Throw of switch: It is the distance through which the toe of the tongue rails rotates sideways, with heel of tongue rail at the centre of rotation.
Toe. Toe is the movable end ob the tapered or tongue rail, by means of which the flanged wheels of the train are diverted prom one track to another.
Tongue Rail: A tongue rat is tapered having toe at one end and heel at the other end. If is fixed at heel end and can move or rotate about the point.
Track Alignment. The direction and position given to the centime line of the railway track on the ground is called the track al ignmeot
Track circuit: The length of track, which is connected by electric circuit to signal cabin, block telegraph apparatus, te, required for indication of light or bell, is called a track circuit.
Trailing Direction. When the switches are seen facing while standing at the crossing, the direction is called tracing direction.
Transition curve: A parabolic curve is introduced between straight ant a circular curve or between two branches of a compound curve. Forth sake of ease, comfort and safety of movement of trains during transition use is why this is called a transition curve. This curve results in smooth transition glue to gradual change in reading
Turnout: A complete set of points and crossing with the intervening lead rails is called a tursoul.
Wagons: For transportation of goods, wagons are provided in goods train. For trans porting drbberent types of goods such as food grains, building material, animals, cloths, coal, sugarcane, petrol, chemicals, ort, explosive automobiles, perishable goods, et, the are
Wean of Rails: Due to movement of very heavy loads at high speeds, the concentrated stresses often exceed the elastic limit of metal, resulting in the metal blow. This bowed material of rails is chipped off by the stirikn of wheels. The rattle is then called worenout and this happening is cold wear of rails.

Advantages of Railways
Railways have brought about many political, social and economic changes in the life of Indian people.
(a) Political-Advantages
\Rightarrow Railway have united the people of different caster, religions customs and ticaditions.
\rightarrow with the adequate network ob railways, the central administration has become more easy and effective
\rightarrow Railways have contributed towards development of a national mentality in the minds of people.
\rightarrow The role of railway during emergencies in mobilising troops and ware equipment has been very significant.
\rightarrow Railway: have helped in the mass migration of the population.
(b) Social Advantages
\rightarrow The beetling of isolation has been removed from the inhabitants of the Indian villages.
\rightarrow By travelling together into the compartment without any restrict of caste, the bee ling ob castle difference has disappeared considerably.
\rightarrow The social outlook of the masses has been broadened through rallwg journeys.
\rightarrow Railway has made it easier to reach people places ob religious importance.
\rightarrow Railways provide a convenient and safe mode of trans port for the country.
(c) Economic Advantages
\rightarrow Mobility of people has increased, thereby the congested areas can be relieved of congestion and the sparsely populated areas can be developed.
\rightarrow Mobility of labour has contributed to industrial development.
\rightarrow During famines, railways have played the vital role in transporting food and clothing to the affected arrears.
\rightarrow Growth of industries has been promoted solve to transportation of raw materials through railways.
\rightarrow Speedy distribution of finished product is acheived through railways.
\rightarrow Railway provide employment to millions of people and thus helps in \rightarrow solving the unemployment feroblems of the country.
\rightarrow Trade developed due to railways thereby has increased the earnings and standard af living of Indian people.
\rightarrow Land values have increased due to industrial development which ultimately result in the increase of national wealth
\rightarrow Due to mobility of products through scailways, the price stabilisation of commodities could be possible.
\rightarrow Commercial farming is every much helped by the railway network thorougher the country.
(a) Techno-Economic Advantages.
\Rightarrow cost having in transportation oblong hall bud traffic
\rightarrow Energy. Efficiency Crailwaye consume one-seventh of fuel used by the
road sector)
\rightarrow Environment friendliness.
\rightarrow Higher sabety (fatal accidents ene-tenth of road sector in India)
\rightarrow Efficient Land use and ease in capacity expansion.
C) assification of Indian Railways

Railway Broad has classified the Indian Railway lines on the basis of the importance of route, traffic carried and maximum peinipio speed on the routes, into the following 3 main catogorill
i) Trunk Routes
ii) Main Lines
iii) Branch Lines

Railway Board has given the following specifications for these lines
(1) Trunk Routs: The following G routes of B. Gi and 3 routes if M.G. have been classified as trunk routes.

On B.G. 1. Delhi - Mughal sarai-Howarh
2. Delhi-Kota-Mumbai
3. Delhi- Jhansi- Chennai
4. Howrah-Bagpur-Mumberi
5. Mumbai - Guntakul-chennai
6. Howrah-Vi jyawada-Chennai

On M.G. 1. Lucknow-Gorakhpur-Guwahati
2. Dethe-Taipur. Ahmedabad
3. Chennai-Madurai- Ticivandrum

The following track standards for trunk routes have been specified.

Hems

1. Max ${ }^{m}$. Permissible speed
2. Rat section
3. Sleeper density
4. Ballast cushion
5. Degree of curvature

BiG.
120 kmph
$52 \mathrm{~kg} / \mathrm{mon}$ heavier $(n+7)$
25 cm below sleeper $7 \frac{1}{2}$

MG.
80 kmph
$37.2 \mathrm{~kg}(\mathrm{~m}$ (i.e. 75 R) $(n+7)$ 25 cm .below sleeper suitable degree Io o km.p.h.
(ii) Main Lines: All hens other than trunk routes carrying 10 Gross M.llim Tonnes (G.M,T) per annum or more for B.G. and $25 \mathrm{G}, \mathrm{M}, \mathrm{T}$. bor M.G. or where maximum permissible speed allowed is $100 \mathrm{Km} . \mathrm{p} . \mathrm{h}$. for B.G. and if 5 kmp.h for M.G. are classified as main heres.

The following specifications have been laid down for man
$\frac{l i n e s ~ b y ~ R a i l w a y ~ B o a r d: ~}{\text { items }}$

1. GMT
2. Max․ Permissible speed
3. Track relaying period
4. Rail section

5. Deign speed fornew tracks
(ii) Branch Lines:

These ate classified on the basis of following criteria All those B.G. lines which carry less than 10 Gross Million Tonnes ($81, \mathrm{M}, \mathrm{T}$) per an num and have maximum permissible speeds less than $75 \mathrm{~km}, \mathrm{p}, \mathrm{h}$ are classified os Branch Lines

The track specifications would vary depending upon the requirements of traffic subject to the following conditions
(r) B.G. locomotive (WG/WP type) and Bobs wagons would be allowed to operate over all branch lines at re reasonable speed.
($i-i$) M.G. engines ($Y G / Y P$ type) and wagons with a maximum $a x / e$ 10 ad Bb 12 tones would be permitted fo operate on all branch uses at a reasonable speed (ir) No new rails will normally be wed on branch lines.
\qquad
 X \qquad
Railway Track (Permanent Way)
The combination of rails, fitted on sleepers and resting on ballast and subgrade is called the railway track or permanent way, Sometimes temporary tracke are also laid bor conveyance of earth and materials during construction works. The name permanent way is given to distinguish the binal layout ob track from these temporary ticack. Fcc. shows a typical cross section of a permanent way on an embehicment.

In a permanent way, the rails are joined in series by fishplates and bolts and then they are fixed to sleeper by different types of basteninge The sleepers properly spaced, resting on ballast, are suitably packed and boxed with ballast. The layer of ballast rests on the prepared subgrade called the formation.

The rail, act as girders to transmit the wheel load to the slot, The sleepers hold the rails in proper position with respect to the propertit gauge a td level, and transmit the load from rads to the ballast.

The ballast distributes the load over the formation $a_{n_{1}}$ holds the sleepers in position.

On curved tracks, super-elevation is maintained by ballous and the formation is levelled. Minimum ballast cushion is maintained at th, inner raid, while the outer rad gets kept more ballast cushion. Addition, quantity of ballast is provided on the outer cess of each track for which the base width of the ballast is kept more than for a straight track.
Main Components ob a Permanent way
Following are the important of a permanent way
(i) Sub-grade or formation
(τ) Ballast
(iv) Sleeper
(iv) Rails
(v) Fixture and Fastenings

Requirements of An ideal sleeper:-
Following are the basic requirements of a permanent way
(i) The gauge should be uniform and correct
$f \tau$) Both the rails should be at the same level in a straight track
(it) On curves proper superelevation should, be provided to the outerriat,
(iv) The permanent way should be properly designed to that the load of the train is uniformly distributed over the two rate
(v) The track should have enough lateral string ${ }^{(t h}$.
(xi) The raddic and superelevation, provided on cicreres, should be properly designed.
(vii) The track must have certain amount of elasticity.
(viii) All joints, points and crossing should be properly designed.
(ix) Drainage system of permanent way should be perfect
(x) All the components of permanent way should satisfy the design requirements.
(xi) If should have adequate provision bor easy renewals and repairs Gauge is the measure of distance between the railroad roils. The distance is usually measured from the inside top edge of the parallel rads.
Different gauges prelevent in India.
\rightarrow In India, the East India company adopted 1.676 m ie. broad gauge or standard gauge.
\rightarrow In 1871, in order to build cheap railways for the develynet of the country. (India) the gout. adopted a meter gauge ie. 1 m .
\rightarrow In billy areas or poor arras, generally narrow gauge and Feeder gauge is adopted

1. B.G. $\longrightarrow \begin{gathered}\text { Standated Gauge l } \\ \text { Broad Grange }\end{gathered}$
2. $M . G \longrightarrow$ Meter Gauge
3. N.G \longrightarrow Narrow Gauge 4.L.G $\rightarrow \begin{array}{r}\text { Feeder Gauge/ } \\ \text { Light Gage }\end{array}$

Gave
Width
1.676 m
1.00 m
0.762 m
0.610 m

Suitability of these gauges under dibberent conditions
4. Trattic condition \rightarrow it the intensity of triattic on the track is likely to be more, a gauge wider than the standard gauge is suitable.
2. Development of poor areas \rightarrow The narrow gauges ante laid in certain parts of the world to develop a poor area and thu e link the poor area with the outside developed world.
B. Cost of track \Rightarrow The cost of raitwaytrack is. directly proportional to the width of gauge. Hence, it the funds available io not sufficient to constiluet a standard gauge, a meter gauge or a narrow gauge is preferred rather than to have no reatiwaye at All.

1. speed of movement \rightarrow The speed of a train is a function of the diameter of wheels which in turn is limited by the gauge. The wheel diameter is u wally about 0.75 times the gauge with and thus, the speed of a trains almost proportional to the gage. 10 higher speeds are to be attained, the
$B-G 7$. track is preferred B. GT. Track is pretested to the M GT, or N. GT. track
2. Nature of country \rightarrow in mountainous, its advisable to have a narrow gauge of track since it is more tiexible and can be laid to a smaller radius on the curves. This is the reason why some important railways, covering thousands of Kilometers, are laid with a gave se as nairvowl

Rails
The rails on the track can be considered as steel girders tort the purpose of caresying axle loads. They are made of high carbon steel to with wear and tear. Flat booted rails art mostly used in railway track, Functions of Rails

Rail in the railway track serve the following purposes:
\rightarrow Rails provide a hard, smooth and unchanging surface bor passage of h moving loads with a minimum friction between the steel rails and steel Wheels.
\rightarrow Rails bear the stresses developed due to heavy vertical loads, late el and braking forces and thermal stresses.
\rightarrow The rail material used is such that it gives minimum wear to avoid replacement charges and failures of rails due to wear.
\rightarrow Rails transmit the loads to sleepers and consequently reduce pressure. on ballast and formation below.
Composition of rail steel
(a) For ordinary Rails: High carbon steel with following composition is wee $\mathrm{Marbon}_{\mathrm{C}} \mathrm{C}$) $-0.55+0.68 \%$

$$
\begin{aligned}
& \text { Manganese (Mn) }-0.55 \text { to } 0.68 \% \\
& \text { silicon (sc) }-0.65 \text { to } 0.90 \% \\
& \text { sulphur (s) }-0.055+0.3 \% \\
& \text { phosphorue(p) } 0.05 \% \text { ot below } \\
& 0.06 \% \text { or below }
\end{aligned}
$$

(b) For Rails on points and crossings: Medium carbon steel worth following composition is used

$$
\begin{aligned}
& \text { Carbon (c) }-0.5 \text { to } 0.6 \% \\
& \text { Manganese }(M n)-0.95+01.25 \% \\
& \text { Sclicon }\left(S^{\prime}\right)-0.05 \text { to } 0.201 \\
& \text { sulphur (S) }-0.06 \% \text { br below } \\
& \text { phosphorus (P) } 0.06 \% \text { below }
\end{aligned}
$$

Requirements of Ray
Rails act as continuous girders carrying axle loads. They should meet the bellowing requirements to serve intended purposes.
\rightarrow They should be proper composition of steel at given above and shout be manufactured by open hearth or duplex process.
\rightarrow The vertical stiffness should be high enough to transmit the load to several sleepers undestneath. The height of rail should, therefore, be
adequate.
\rightarrow Rails should be capable of withstanding lateral force. Large ceil of the head and boot endows the rails with high lateral stiffness.
\rightarrow The head must be sufficiently deep to allow bor an adequate margin of vertical wear. The wearing surface should be hard. \rightarrow Web ob rail e should be sufficiently thick to bear the load coming \rightarrow Foot should be wide enough so that rigidity in horizomal pron overturning, especially on curves.
\rightarrow Bottom of the head and top ab the boot of rails should be so shaped as to enable the fish plates to transmit the vertical load efficiently from the head to the root at rail joint.
\rightarrow Relative distribution of material of rail in head, web and boot must be
\Rightarrow The centre ob gravity of the rail sections.
so that maximum tensile and compressive must lie approximately at mideheight
\rightarrow The fillet radii must be large to reduce the connection concentration - b tresses
\rightarrow The tensile strength of the rail piece should not be less than $72 \mathrm{~kg} / \mathrm{m}^{2}$
\rightarrow The rail specimen should withstand the blow of 'Falling Weight Test on Tue Test "as specification by Indian Railway standard without fracture.
Length of rails:
From the consideration of strength of the track maximum possible length is adviscible as it will reduce the number of the joints, less number of bitfings and textures and economical maintenance. But in practice the following factors are considered to decide the length of rails.
(c) Ease of transportation
(ii) Reasonable cost of manufacture
(i ir) Ease in loading into the available wagons
(iv) Development of temperature stresses

Indian Railways have adopted the following length of rats in practice.
(g) For BG tracks $=13 \mathrm{~m}(42)$
(i) For MG\& HG tracks $=12 \mathrm{~m}\left(39^{\prime}\right)$

Types of Raid sections

There are thrice types of rail sections
(a) Double headed rails
(b) Bull headed rails
(c) Flat booted rails

(a) Double-Headed Rats

These rats have used in the early stages of rail road development. They are divided into three sections

- Upper table . Web - Lower table

The upper table and lower table were identical, and they were introduced in the hopes of doubling the rail's lifespan. When the upper table wearsolet. the rails can be placed on the chair upside down and reversed, allowing the tower table to be used.

However, this plan quickly proved to be incorrect since the continuous contact of the tower table with the chair caused the lower table's surface to become rough, making smooth train operation impossible. As a result, this type of rat is almost obsolete. These rails are now available in lengths ranging from 20 to 24 beet.

b) Bull headed rats:

This type of rail is made up of three pieces

- The head. The web. The boot. The head is larger than the boot Steel was used to construct these rails. The head is larger in place. and the foot holds the wooden keys that is to provide the required striere As a result, the boot's sole purpose 's to provide. and rigidity to rails.

When these rats are used. two cast ron chairs are required to each sleeper. Their weight ranges from 85 to 95 pounds, and they cur grow up to 60 beet long.
c) Flat-boted rates:

These rails were first invented in 1836 by chargles vignstes and so are also known as vignoles rails. They are divided into 3 section

- The head. The web. The toot

This type of rat has grown in popularity to the point where it now makes up over 90% of all railway lines in the world.

The benefits of flat-booted rats are as follows
\rightarrow They don't require a chair and can be spiked or keys to the sleepers directly.
\rightarrow They are thus costreftective. They ne less expensive than bull headed rails
\rightarrow Both vertically and laterally, they are substantial sitters for curves, lateral rigidity is crucial.
\rightarrow They artel less prone to kinking and have a more con sistant top surface than bull headed rails.

The weights from train wheels are distributed over a large number ob sleepers and hence a broader area, resulting in increased frack stability, longer rail and sleeper inge, lower maintenance costs, less rail failure and bewer traffic delays.

Rat Wear

 and abnormally highloads.Therecerre 3 different types of rail wear
\rightarrow Wear on the top of the rads
\rightarrow Wear on the head of the rails at the end of the marls \rightarrow Wear on the side of the rails' head.

Rail joints are necessary to hold the adjoining ends of the rails in the correct position, both in the horizontal and vertical plate

Following are the types of rail joints
(a) supported rail joints:

When the rail ends rest on a single sleeper if is termed as supported joint. The duplex joint sleeper with other sleepers is an ex ample of the supported joint.

(b) Suspendedrailjoints

When rail ends are projected beyond sleepers it is termed as suspended joint. This type of joint is generally used with timber and steel through sleeper

(c) Bridge joint:

When the rail ends are projected beyond sleepers as in the case of suspended joint and they are connected by a blator corrugated plate called as bridjeplate it in termed as a bridge joint
joint

(d) Insulated joint:-

When an insulating medium ie inserted in a rail joint or stop the How of current beyond the track circuited part then that type of joint is called
an insulated joint
(e) Compromise joint:it is done by means if fish plated which bit both rails and this joint is termed as compromise joint.
(f) Welded joint: These are the best joints as they fulfil nearly all the requirements of an ideas or perfect joint.
(9) Staggered/broken joint:

If the rail tracks.
\rightarrow These joints are generally provided on curves, where the length of outer curved track is greater than the length of inner curved track.

(h) Square or Even joint:

The joint of the one railway track are direedy opposite on joints of other mail track. This type is generally used on straight track.

(i) Expansion joint: In bridges, provision for expansion and contraction is kepi bor girders and rails both.

Purpose of welding rails:
\rightarrow To increase the length of the rails
\rightarrow To repair the worn out or damaged rates
\rightarrow To build up worn out points and rails on the sharp curves
Advantages of welding rails:
\rightarrow Reduces the creep and friction due to increase in length of rad.
\rightarrow Expansion effects due to reduction in temperature.
\rightarrow Increase the life of the rails due to decrease in wear
\rightarrow In bacietates frack circlecting on electiofied tracks
\rightarrow The cost decrease because as the length increase automatically the numb of joints elecreases.
\rightarrow High frequency vibrations due to heavy to the heaviness of the rats.

Creep of Rat
It is defined as a longitudinal movement of rail with respect to sleeper. Rail have the tendency to gradually move in the direction of dominant traffic. The creep ob rail is common to all railway track and ate value varies triton almost nothing in some causes to about $130 \mathrm{~mm} / \mathrm{month}$ in creep.
Causes obereep.
(a) Accelerating or starting of train causer creep of rail.
(b) Deaccelerating or stopping of train

If sudden stopping of train takes place, braking effect tends
to push the rail forward and thus causes creep in bortward direction
(c) Wave action or Wave Theory:

As train is passing under the rolls the portion under the rolling wheels is compressed and depressed sightly due to wheel loads. Ae more the wheel moves this depression also mover and the portion which is under elepression previously comes back to its original position.
(d) Percussion Theory.

This type of creep of rail occurs due to impact of load. In this type, when the wheels of rail passes overs the joint, the trailing rails gets depressed down and the wheel gives impact to the facing of rail.

In addition to this creep of rail may also be caused due to following reason \rightarrow Insufficient numbers of sleepers is laid
\rightarrow Uneven spacing of sleepers
\rightarrow Improper expansion joints
\rightarrow Use of improper and bally sleepers
\rightarrow Rails too light for the traffic carried by them.
\rightarrow Poor drainage work
\rightarrow Improper maintenance of track gauge and joints.
Effect of creep:
\rightarrow The results of creep are of very serious n.
ears should be taken to deted and repair the cree. nature and hence gree al
\rightarrow The suspended joints starts becoming supported joints and rails ends get battered.
\rightarrow The sleepers move out of their position and hence the rail
is disturbed and also the rail level. This result in bod running if train.
\rightarrow Due to \Rightarrow The interlocking mechanism of the signal are disturb bed duet. creep
\rightarrow Rail joints get opened out resulting in bolts holes getting elongated and premature fracture of fishplates and bolts.
Measurements of creep:
Creep posts should be erected every. kilometer on litho side of the track and the posction ob joints should be marked on nee. the posts. The measurement of creep should be taken frequently at an interval of about 3 months in o prescribed register to be maintained by the P.W.T. creep in excess of 150 mm (6 inches) should not be permitted rails should be found jammed in single rail track. In approaches
sleepers are the transverse ties that are laid to support the rails.
They have an important role in the frack as they transmit role in the track as they tricansmit the wheel load from the rads to the ballast.
Function of sleepers:
\rightarrow To hold the rails to correct gauge and dignment
\rightarrow To give a firm and even support to the rail
\rightarrow To transfer and distribute the axle load through rail over a sufficiently
large area of ballast.
\rightarrow To act as an elastic medium between the rails and ballast to absorb vibrations and blows if the moving wheels.
\rightarrow To maintain the alignment of the track
\rightarrow To provide insulation for the electrified track.
\rightarrow To provide a proper grade, longitudinal and lateral stability to the track.
\rightarrow To provide means for easy replacement of reit fastening without disturbing the traffic during the service life.
Requirement of An ideal sleeper:
\rightarrow It should be economical
\rightarrow The bitting of the sleepers should be such that they can be easily adjusted oluring maintenance.
\rightarrow They should not be too heavy or excessively light in weight.
\rightarrow They should have long life.
\rightarrow They shout be able to maintain the correct gauge
\rightarrow They should be quite durable.
\rightarrow The bearing area of sleepers should be enough fo resist crushing.
\rightarrow They should faciliate easy removal and replacement of ballast
\rightarrow They should be capable ob resisting shocks and vibrations al le to heavy moving loads.
\rightarrow They should be suitable for track circuiting it required.
\rightarrow The design of sleepers should be such that they ale not pushed oud easily clue to moving trains.
\rightarrow They should have high scrap value.
Different types of sleepers:-
According to the use of materials, railway sleepers are classified into the following categories
(1) Timber or wooden sleeper
(2) Metal sleeper (a) steel sleeper
(3 (b) Cast Iron sleeper
(3) Concrete sleeper (a) R.C.C sleeper
(b) Prestersed Skeper

These are commonly 254 mm wide by 127 mm thick in cross section by 2600 mm long. The sleepers are first seasoned and treated with preservative. Creosote is an oil generally used/sprayed on the surface. They ore either hard wood or softwood typ.

Wooden sleepers are the ideal type of sleeper. Hence they are universally used. The utility of timber sleepers has not diminish he due to the passage of time
Advantages of wooden sleepers
\rightarrow Theyare easily liable to attack by vermin and weather
\rightarrow They are susceptible to tire
\rightarrow It is difficult to maintain gauge in case of wooden sleepers
\rightarrow scrap value is negligible.
\rightarrow Their useful life is short about 12 to 15 yeare
2 Metal sleeper
Sleepers are beds in the railway tracks. The main reason to use metal sleepers are because of insufficiency of wooden sleeper. Metal sleepers use widely in the modern construction of railway tracks. The main role of sleeper is to transfer load from rails to the ballast. The metal sleepers are cast iron and steel.

Advantages:-

\rightarrow Metal sleepers are uniform in strength and durability
\rightarrow For metal sleepers no frequent renewal requires
\rightarrow It is economical and have longer lite
\rightarrow Low maintenance and easier repair
\rightarrow Gauges are easy to maintain and adjustable.
\rightarrow Easy in manufacturing and laying.
\rightarrow The fittings operation is better and ot makes less occurence of creep,
\rightarrow It is fireproof
\rightarrow It is reusable and have e, good setup value
\rightarrow The manufacturing of sleepers is a simple process.
\rightarrow The fixtures of the sleepers are less in number and simple in nature.

Disadvantages

\rightarrow More ballast requires for metal sleepers
\rightarrow Difficult to maintain due to rust and other chemical gents in atmospheres.
\rightarrow And it is more likely subjects to corrosion/rusting.
\rightarrow As a good conductor of electricity it interfaces with track circuitinge.
\rightarrow If is not suitable bor level crossing and bridges.
\rightarrow Unsuitable in case ob pointing.
\rightarrow Creep occurs frequently
\rightarrow If subjects easily to deform and bend due to heavy moving loads in it,
\rightarrow Suitable only for stone ballaste.
\rightarrow Cracks develop easily in metal sleeper seats through the holes of bots \rightarrow More care has to take to maintain steel steeper.
(a) Steel sleeper:
\rightarrow steel ties are used where wood or concrete is not favorable, bor spomple in tunnels with limited headway clearance.
\rightarrow They are also used in heary curvature prone to gage widening.
\Rightarrow This type ob steel ties can cause problem to signals control system.

Advantages

\rightarrow If is more durable. Its life is about 35 years
\rightarrow Lesser damage during handling and transport
\rightarrow It is not susceptible to vermin attack.
\rightarrow It is not susceptible to bine.
\rightarrow Its scrap value is very good

Disadvantages

\rightarrow If is liable to corrosion.
\rightarrow Not suitable for track circuiting
\rightarrow It can be used only for rails for which it is manufactured.
\rightarrow Cracks at railseats develop during the service.
\rightarrow Filing required are greater in number.

$\frac{\text { C. I. Sleepers }}{\text { Advantages: }}$

\rightarrow Service lite is very long
\rightarrow Less liable to corrosion.
\rightarrow Form good track bor light traffic up to 110 kmph as they tore rigid track subjected to vibrations under moving loads without any damping
\rightarrow scrap value is high.
Disadvantages
\rightarrow Gauge maintenance is difficult as tie bars get bent up.
\rightarrow Not suitable for circuited track.
\rightarrow Need large number of fitting
\rightarrow Suitable only for stone ballast.
\rightarrow Heavy trattic and high speeds ($>110 \mathrm{kmph}$) wall cause loosening of keys and
developronent of high creep.

Advantages:

\rightarrow IF is more durable having greater lite (upton 50 years)
\rightarrow It is economical as compared to wood end steel
\rightarrow Easy to manufacture
\rightarrow It is not susceptible to vermin attack
\rightarrow It is not susceptible to bice
\rightarrow Good bor track circuited areas Disadvantages
\rightarrow It is brittle and cracks without warning.
\rightarrow It cannot be repaired, and reque red replacement.
\rightarrow Fittings required are greater in number
\rightarrow Ho scrap value.
${ }^{3}$ (a) Reinforced concrete sleeper:- (Fig 9.12)
These are of two types
(i) Through type, (Ai) Composite or B Hock and tie type.

In through type, when concrete sleeper is stressed. cracks on the tension side are inevitable. Though the cracks are very small and almost invisible but they tend to enlarge with repetition of the impact loadings if the fast trains. This is the main cause of, the failure of these sleeper.

These composite or block and tie type of sleeper are not subjected to same degree of tensile etfiess and have given excellent results in France where a steel tie of inverted T-section is used. If is not in use, at present 22.2 cm

F8 9:12. Reinforced concrete sleeper (component TyRO)
(b) Pre-striessed Concrete sleeper (Fi89.13)

All the disadvantages of reinforced concrete sleepers have been eliminated by prestressing technique bor sleepers.- In pirastressed concrete sleepers, the concrete is put under a very high initial compression. The design is based
E) The max permissible compressive strength of $211 \mathrm{~kg} / \mathrm{cm}^{2}$.
(ii) The maximum cube crushing strength of concrete in the sleeper is $422 \mathrm{~kg} / \mathrm{cm}^{2}$ at 28 days, and (ii) The pre-stressed wires are stressed to an initial sires of $8.82 \mathrm{~kg} / \mathrm{cm}^{2}$.
Disadvantages of Pire-stressed Concrete sleepers:
(i) There are heavily damaged in case of derailments.
(Gi) The bed of the ballast is specially prepared.
(iii) These are uneconomical.
(iv) The standard of maintenance for the track, where these sleepers are used, is to be kept very high.
(v) They are more rigid in nature.
(vi) The design and construction is complicated but even then the desired strength is not developed at the centre of sleeper.

Comparision of different type of sleepers

Scanned by CamScanner
(a) Cast-Iron sleeper:- Cast Iron sleepers have been exterwerey used in India and on a small scale in South America. They are of following types.
(1) pot or Bowl sleepers (2) plate sleepers, (3) Box sleepers.
(4) C.S.T- 9 sleeper (combination of plate and box type), (5) Rail tree duplex sleeper.
(1) potor Bowl sleeper: They consist of two bowls or pots placed inverted on the ballast.
(2) platesleeper: This sleeper consists of rectangular plater about $86.5 \mathrm{~cm} \times 30.5 \mathrm{~cm}$ in size with 30.5 cm side parallel t the rails and of projecting ribs under the plates for lateral stability. The plates are held in position er th tie bars, the connection being similar to that with pots. gobs and cotters, distance piece and keys ort keys alone being used.

It provides the effective bearing area of $0.464 \mathrm{sq}, \mathrm{m}$ per sleeper on Broad Gauge. Both, pot and plate. sleepers, can be used with Hiat-booted and bull headed rails, but they have to be coacted accordingly, Jaw form an integral part of the casting in case of bull-headed
rails. A rail seat or chair is provided to hold the Flat-looted or Bull-Headed rails respectively, with 1 in 20 cant.

The various types of cast iron plate sleepers are being used such as (i) DO plate sleeper, (i)ehham and Olphert' sleepers), (Gi) Laisly Pedectical, (iii) The lines patent (iv) N.W.R type, (v)L.K. type, (vi) K.K. type, (vii) $3 s / T . S$.
(viii) C.S.T. 4 , (ix) C.S.T. $4 A,(x)$ C.S.T. 9 , (xi) Raze bine duplex sleeper.

Out of the above types, the cast iron steeper currently used is known as the C.S.T-9, (Being ah of the series produced by Central standard office) in which the cast iron component has a shape combining the pot, -bowl and plate. This C.S.T. 9 plate sleeper has been standaidin and widely used on Indian Ratwayl.
(3) Box sleeper:- This sleeper is out op use these days and therefore, it is not discussed over here.
(4) C.S.T. 9 sleeper:

This sleeper was standardised by Track standard Committer. If has been extensively used on Indian Railwigg for the last thecty years and moreover, As comparase satisfactory behaviour has resulted in the withdrawal of all the previous designs.
side of the rail If has a ticiangular inverted pot on either a box on the top of the plate.
(5) Rail Free Duplex sleepers:-

A, joints sleeper of cast iron known as rail free duplex sleeper has been used as rail joinfe in conjuction with C.S.T-9 sleepers. These sleepers are used 10 prevent the cantilever action between the two supports. of the sleeper with any fitting. Duplex sleepers give added strength to the rail near the joint. Their use is not very. popular due to the fact that rail ends supported on this steeper gets very severely bettered. (F2, 9,7)

It is a layer of broken stone or any other such grith material laid and packed below and around sleeper.
Functions of ballast
\rightarrow To provide good drainage porithermly over the subgrade.
\rightarrow To provide elasticity and resilience to track for getting proper riding comfort.
\rightarrow To held the track structure to line and grade.
\rightarrow To reduce dust.
\rightarrow To prevent growth of brush and weeds.
Requirements of Good Ballast 1
$\rightarrow \sim$ It should be tough and should not crumble under heavy loads.
\rightarrow It should not make the track dusty or muddy.
\rightarrow It should otter resistance to abrasion and weathering.
\rightarrow It should not produce any chemical reaction with rails end sleepers.
\rightarrow The materials should be easily workable.
\rightarrow It should retain ifs position and should not be distributed.

Materials used al ballast

1 Broken stone: Broken stone is one of the best materials for railway ballast to
be used on the railway track. Almost all the important railway tracks are provided with broken stone. The store to be used as railway ballast should be hard, tough nonporous and should not decompose when exposed to air and light. Igneous rock's like quartzite and granite forms the excellent ballast materials. When these are not available then lime stone and sandstone can also be used as good ballast material. $\xrightarrow[\rightarrow \text { It holds the track in position }]{\rightarrow}$
\rightarrow It is good for heavy traffic
\rightarrow If can serve high speeds equally well.
Disadvantages
It expensive in its initial cost
2 Gravel:
Gravel ranks next in its suitability bor use as material torr ballast and is used in many countries of the world in very large quantities. Gravel consists of worn fragments of rocks occurring in nat ural deposits. Gravel or shingle may be obtained from river bed or it may be dug out from gravel. pith.

Advantages

\rightarrow It is cheaper in its cost al it has not to be broken al like stone ballast
Disadvantages
\rightarrow If easily rolls down under the vibrations and packing under the sleepers gets tense.
\rightarrow The variation in size is consideratibe) and hence requires screening before use.
\rightarrow Gravel as obtained trim gravel pits, is full obearth and hence requires proper cleaning it proper drainage of the track is to be done.

The residue from the coal in locomotever or other furnaces is called cinder or asher. If is one of the universal forms of ballast as if is a byproduct of all the railway which use coal as a fuel.

Advantages:
\rightarrow Handling of the material is not cumbersome this materials can be handed easily
\rightarrow Cost is very low and hence can also be used for sidings.
\rightarrow It has got bacily good drainage properties.
\rightarrow Large quantities of this material can be made available as short notice.
\rightarrow In case of emergence such as caused by the destruction if portions of railway
This material proves to be very useful and is used in the formation repairing as well as for packing of track.

Disadvantages
\rightarrow If is highly corrosive and cannot be used where steel sleepers are taxed.
\rightarrow The foot of the rails get affected due to use of this type of material as ballast.
\rightarrow If is very sot and can easily be reduced to powder render vibrations and hence the track becomes very dusty. This is objectionable particularly in dry
weather.
$4 \frac{\text { Sand }}{\text { Sand is another good materials for railway ballast, coarser sand is to be }}$ preferred to tinersand and the best sand is that which contains a quantity of fine gravel varying in size from $\frac{1}{8}$ upwards.

Advantages

\rightarrow It the sand is free from earth and vegetation then it has good excellent properties to drain oft water immediately
\rightarrow It is cheaper it available in nearby locality.
\rightarrow If produces very silent track and hence are suitable tor packing cast iron pot

Disadrantajes

\rightarrow Its gets easily disturbed under vibrations and hence its maintenance is vert y \rightarrow detificut.
\rightarrow The sand can be easily washed off or blown away and hence requires frequent renewal.
\rightarrow The sand particles may get into the moving parts of the vehicles and produces friction. This leads to heavy wear of vehicles.
5 Kankar:-
Kankers a lime agglomerate is found in many places in the form of nodules of varying sizes
Advantages
\rightarrow Kankar is suitable materials for ballast when other good material for ballast is not available or if available. uneconomically.
\rightarrow Kankar is good for light freatic on metre and narrow gauges
Disadvantages
\rightarrow Ifis a very soft and can be reduced to powder form easily, hence, making the track duct.
\rightarrow The main ten ance of track is very difficult
6. Moorum: The decomposition laterite results into the formation of moorum. It has red and sometimes yellow colorer. The best moorum is that which contains large quantities of small laterite stones. Advantages
\rightarrow Moorum is good materials for ballast when other materials for ballast is not available
\rightarrow Moorum can be safely used on newell laid track and acts as a soling when broken stones are laid afterwords.
\rightarrow Disadvantages got good drainage properties
\rightarrow Moorcum is very soft and reduce to powder and hence to dust form in shone \rightarrow Maintenance of tracks laid with this materials is difficult.
Brick Ballast or Brick Bats:
sarre used as materimes the broken tor ballast.
Advantages
\rightarrow It has got excellent drainage properties
\rightarrow They can be used as good ballast materials where suitable material for ballast is either unavailable or uneconomical.
Disadvantages
\Rightarrow Brickbats turn down into powder from easily and hence the track becomes \rightarrow Maintenance of the track laid with this material as ballast is very difficult. \rightarrow Rails are often corrugated on the track: laid with this material as ballast 8. Earth selected, \rightarrow selected earth may be used as materials for rail wage ball oast bor sidings and also bor newly laid tracks.

Track textures for B.G.

Fastening: A rail fastening system is a means of 6×1 ing rails to railroad ties. The terms rail anchors, tie plates, chairs and track fasteners are used to refers to parts or all ob a rail fastening system. Various types of fastening have been used over the years.
Fishplates:
In rail terminology, a bishplate, spice bar or joint bar is a metal bar that is bolted to the ends of two rattle to join them together in a track. The name is derived from fish, a wooden bart with a curved profile used to strengthen a ship mast. The top and bottom edges are tapered inwards so the device wedges ifselt between the top and bottom of the rail when it is bolted into place. In rail transport modeling, a bishplate is often a small copper or nickel silver plate that slips into both rails to provide the function of maintaining alignment and electrical continuity.

Fish as specified
The first railway fishplate

RAIL-TO-RAIL Fastening

Geometric for Broad Gauge

Typical section of an embankment
Landwidth:- With a view to determine what the displacsosition of the land will probably be on the completion of the work for which it had been acquired, the classification given in paraph etc adopted.

On railways, land is divided into two classes etc.
(a) Permanent landwidth and
(b) Temporary landwidth

Permanent landwidthifs land which will be required permanently after the railway is open tor traffic and the work of construction is complete. Under this head will be included all land to be occupied by the formation if the permanent line of rearlway
width side slopes of banks and cuttings and the berms connected therewith, catcheator width side slopes of banks and cuttings and the berms connected therewith, catch eater to tunnels and shafts belonging to them, the sites of bridges and protection or training works: stations yards, landing places tor railways ferris, ground to be occupied by works belonging to the railway such as gas works, arrangements for water supply. septic tanks, collecting pits, filter beds and pumping installations churches, plantation gardens and recreation grounds, sites for station, offices, workshops, dwelling
houses and other buildings required for the purposes of the railway, or the accommodation of the staff, with the grounds, yards, roads \&c. apperforning thereof. Under this head will also be included land outside the permanent rat way boundary, with which will be required for the permanent diversion of roads or river, or for other works incedental to the construction of the rail way, which are made for public purposes and will not on completion of the works be maintained by the ration authorities Temporary land width: It is land which is acquired for temporary purposes only, and which is disposed if after the work of construction is completed.
Gradients for drainage.

Drainage is defined as interception, collection and disposal of water away from track. Drainage is the most important factor in trace maintenance and for stability of banking/cuttings. When water seeps into the formation, it weakness the bonds between the soil particles, sot ton thereby increasing propensity for slope-slide, on the other y trying to slide shear strength of soil, thereby decreasing factor ob other and, it reduce if slope. Therefore, quick disposal of water from form safety for stability very essential. Drainage system should be effective in action top slopes is stagnation of water and allow quick disposal of water preventing the drainage is not being given its due importance water. At present, to drainage have been detailed in various guidelineld. Provisions relating time to time, however, the present Guidelines hishlines issued by RDSO from of drainage arrangement in embankment as highlights the salient beater" conventional drainage systems. as well al cutting

- Surface drainage

- Side drains
- catch water drains
- Subsurface drain

Cantor superelevation!'s the amount by which one rail is raised above the other rail. If is positive when the outer rail on a curved track is raised above inner rail and is negative when the inner rail on a curved track is raised above the outer rail.
Equilibrium speed! - It is the speed at which the centrifugal force developed during the movement of the vehicles on a curved track is exactly balanced by the cant provided.
Cant deficiency. Cant deficiency occurs when a train travels around a curve at a speed lower than the equilibrium speed. It is the drbferience between the actual cant and the theoretical cant required for such a lower speed.
cant excess: Cant excess occurs when a train travels around a curve at a speed lower than the equilibrium speed. It is the difference between the actual east and the theoretical cant required for such a lower speed.
Maximum permissible speed of the curve; If is the highest speed which may be permitted on a curve taking into consideration the radius of the curvature, actual cant, cant deficiency, cant excess and the lengths of transitions. When the m are" permissible speed on a curve is less than the maximum sectional speed of them section of a line, permanent speed restriction becomes necessary. cant gradient and cant deficiency gradient indicate the amount by which cant or deficiency of cant is increased or reduced in a given length of transition egg. 7 in 1000 means that cant or deficiency of cant of 1 mm , is gained on lost by every 1000 mm of transition length.
Rate of change of cant: or rate of change of cant deficiency is the rate at which cant or cant deficiency is increased or reduced per second, at the maximum permissible speed of the vehicle passing over the transition. Superelevation, (ant deficiency and cant excess
(7) superelevation
(a) The equilibrium superrelevation/cant necessary for eng speed is calculated tron the formula

$$
C=\frac{G V^{2}}{127 R}
$$

where e is cant/supenelevation in $m m$, Gif the gauge of track + width of nark head R is radius of curve

Necessity of superelevation!.

When a main line is on a curve and has turnout of contrary flexure loading to a branch tone, the superelevation necessary bor a average speed e to trains numbing over the mean line curve cannot be given.

If the combination of lateral displacement of the centre of gravity provided by the superelevation, velocity of the rolling stock and radius of curve is such that resulting borce becomes centered between and perpendicular to aline across the running rails the downward piessure on the outside and inside rails of the curve will be the same.

The superelevation that produces this condition bor a given velocity and radius of curve is known as the balanced or equilibrium elevation. Limits of superelevation and cant deficiency

Superelevation should be provided in such a way as to accomods various trains running with different speeds from time to forme. There are limits to the amount of superelevation which may be provided safely. Normally, the maximum permissible values of superelevation according to the Railway Board is $\frac{1}{10}$ th of gauge. Therefore, the maximum permissible values in India bor deferent gauger are Limits of superelevation

(ri) $\mathrm{Max}^{m} \mathrm{~S} \cdot \mathrm{E}$ bor $\mathrm{m} . \mathrm{G}_{2}=\frac{10}{10} \times 1 \mathrm{~m}=0.1 \mathrm{~m}=10 \mathrm{~cm}$
(ii) Maxm SEE. $60 \pi \mathrm{NG}=\frac{1}{10} \times 0.76 \mathrm{~m}=0.076 \mathrm{~m}=7.6 \mathrm{~cm}$

Gauge	Cant deficiency bore speed upto 100 kmph	cant deficiency for speed higher than L00 kmph
B.G.	76	100
MG.	51	Not specified
N.G.	38	Not specified.

Q1 If a 8° curve track diverges from main curve of 5° in an opposite direction in the layout of a broad gauge yard, the cant to be provided for the branch track for maximum speed of $45 \mathrm{~km} / \mathrm{h}$ on the mainline and ' $G^{\prime}=1.676 \mathrm{~m}$ is permitted.
Ans Mainline

$$
D=5^{\circ}
$$

$$
v=45 \mathrm{~km} / \mathrm{h}
$$

B.G. yard $G=1.676$

$$
R=\frac{1720}{D}=\frac{1720}{5}=
$$

Superelevation $(e)=\frac{G V^{2}}{127 R}=\frac{1.676 \times 45 \times 45}{127 \times 51720} \times 5$

$$
=7.76 \mathrm{~cm}
$$

cant deficiency for B.G. $=7.6 \mathrm{~cm}$
so, Negative cant $=7.76-7.6=0.16 \mathrm{~cm}$
Branchline
$D=8^{\circ}$
So that cant for maintrack $=0.16 \mathrm{~cm}$
Therefore cant to be proved ed in branch track $=0.16 \mathrm{~cm}$
cant for branch line $=7.6+(-0.16)$
$\therefore 7,44=\frac{1.676 \times v^{2} \times 8}{127 \times 12}=7.44 \mathrm{~cm}$
$\Rightarrow V^{2}=\frac{7.44 \times 1.27 \times 1720}{1.676 \times 8}=1212.107$
$\begin{aligned} \Rightarrow V=\sqrt{1212.107} & =34.81 \mathrm{kmph} \\ & =35 \mathrm{kmph}\end{aligned}$
Q. 2 A 5° curve divergestrom a 3° main curve in reverse direction in the layout of B.G. yard. It the speed on the pranchline is restricted 35 kmph , determine the
restrict speed on the mainline.
Ans
Branchline
$D=5^{\circ}, v=35 \mathrm{kmph}$
$B \cdot G \cdot$ yard $(G)=1.676 \mathrm{~m}$
$R=\frac{1720}{\Sigma}=344$
$e=\frac{G 127 R}{127 R}=\frac{1.676 \times 35^{2} \times 5}{127 \times 1720}=4.69$
cant deficiency for $B, G=7.6 \mathrm{~cm}$
So, Negative cant $=4.69-7.6=2.91 \mathrm{~cm}$
cant ti be provided on maintrack $=2.97 \mathrm{~cm}$
Mainline.

$$
\begin{aligned}
D & =3^{\circ} \\
\text { cant of main track }=2.91+7.6 & =10.51 \\
\therefore 10.51 & =\frac{1.676 \times V^{2} \times 3}{127 \times 1720} \\
\Rightarrow & V=\sqrt{\frac{10.51 \times 127 \times 1720}{1.676 \times 3}}=67.51 \mathrm{kmph} .
\end{aligned}
$$

Necessity of geometivic Design of a razlwaytradu.
Most of the tain derailments are due to the following reasons.
(i) Frack defects (iv)Vehicular defects, (iii) Operational defects

The civil Engineer is mainly concerned with track de fects. He should be aware of the track defects and how to remove these defecte so that no derailment takes place. Railway track should be designed, suiting to load and speed of the train and meeting the safety and economy requirements.

A train may derail on the straight track due to the following defects in the trader:
(i) Defective cross-ievels
(iii) Defective Gauge, and
(ii) Defective alignment

In addition to this, on curved track, the deratment may occur due to the following reasons:
(a) Gaping joints
(ai) Lifting ob toe of switch due to in ad equate fittings
(iii) Improper assembly of crossing, loose crossing bolter or wing
(iv) Excessive wear in swathes
(v) Tight gauge and defective check clearance at the nose of crossing.

Therefore, if all the above elements are properly designed, the possibility of derailments due to defects in the track can be quoided, cross levels, alignment, gauge and joints have already been discussed in previous chapters?
that follows. In thee chapter, the study oil be confined to the following elements of a railway track:
(1) Gradient and Grade compensation (2) speed of tracer
(3) Radius or Degree of the curve
(4) Cant or superele vatioo
(5) Curves
(6) Widening of Gouger on curves

Limits of Superelevation and Cant-Deficiency.
As discussed in the previous articles, superelevation should be provided in such a way as to accomodate various fran running with deferent speed from time to time. There are limits to the amount of superelevation which may be provided safety.

Normally, the maximum superelevation, according to the Rarlwaye Bocerd is $\frac{1}{10}$ th of gauge. Therefore, the maximum permissible Values in India for bitberent gauger ane:

Table 151 Limits of superelevation

Scanned by CamScanner
(i) Maximum C . B. bor $B, G .=\frac{1}{10} \times 1.65 \mathrm{~m}=0.165 \mathrm{~m}=16.5 \mathrm{~cm}$
(i) Mayimum S.E for M.G. $=\frac{1}{10} \times 1 m=0.1 m=10 \mathrm{~cm}$
(in) Maximum S.E for $W \cdot G .=\frac{1}{10} \times 0.76 \mathrm{~m}=0.076 \mathrm{~m}=7.6 \mathrm{~cm}$
In Britain maxM $e t E=19 \mathrm{~cm}$ Ci.e $7.5^{\prime \prime}$?
In America mayn \& $E=15.2 \mathrm{~cm}\left(\right.$ ic $\left.\mathrm{A}^{\prime \prime}\right)$, for $4-8 \frac{1}{2}$ "gange.

Necessity of points and crossing
Points and crossings are provided to help transfer Railway vehicles from one track to another．The track may be parallel 10 ， diverging from or converging with each other．

Points and crossings ante necessary because the wheel of rat way vehicles are provided with inside Hanger and therefore，they requeres this special arrangement in order 10 navigate their way on the rails．The points or switches aid in diverting the vehicles and the crossings provide gaps in the rails so as to help the flanged wheels to roll over e them．

The provision of points and crossings is essential for achieving the following objects
\rightarrow To receive the trains at the alloted platform of the railway station．
\rightarrow To enable the lain to occupy the specified track leads to the destinatir station
\rightarrow To facilitate shunting operation
\rightarrow facilitate marshalling of trains from and to the wachinglines，sidingees，
Turnout
It is a mechanical device that used to guide the trans from one rat track to another．As an important part in rail construction， turnout helps to enable the trabficability of the rail．

If is the simplest combination ob points and crossings which enables one track either a branch line or a siding，to take off from another track．So the object of turnout is to provide baciluties for safe movement of trains in either direction on both the tracie．

Following parts ob a turnocet
\rightarrow A pair op points or saritches（ABCD and EFPQ）
\rightarrow A pair of stock rails．
\rightarrow A vel crossing（GHH）
\rightarrow Two check rails
\rightarrow Four lead rail，＂隹，＂gang tie chair＂and erossingtie．plate
\rightarrow stuck or stope
\rightarrow Bearing plates，slide chains stretcher bars etc．
\rightarrow For operating the points－Rods，cranks，levers，of．
\rightarrow For locking syetem－locking box，lock bar，plunger barite．

Important terms Used in points and crossing
（i）Facing direction．：If someone stands at toe of switch and looks （i）Facing direction：It some one stands at toe of sci ch
toward the crossing，then the direction is called＂Facing Directions
（Et）Traishowing dir $16-1$ ）
（Ex）Trailing direction：If someone stands at the crossing and looks towards the switches，then the direction is called＇Trailing Directive？

of crossing (A.N.C).
Fig. 16.1 Left hand tum out (split switch)
(iii) Facing Points of Turnouts are those where trains pass over the scertck first and they pass over the crossings. These are important to specify when the direction of movement of trains is reserved tor baying direction.
(iv) Trailing points of Turnouts cure those on the opposite side of facing points in which the train o pass over the crossing inst and then over the switches. These are important to speceify when the direction of movements of trains is reserved for trailing direction only.

So every points may be of a pacing or (trading' point or both, depending upon the directions of movements of trains.
(v) Rishi-ltand and Left-Hand Turnouts:.
t the right of the main If a train from main track is deventer t the right the main rouse in the racing direction the os this diversion is known as Right-Hand turnolet. (fy $86-2$) main route in the facing direction then the diversion is known as Left-itand turnouts. CHis (6.3)
(vi) Rishtrittand and Left-Hand Switches
right-hand scoitches depending upon lets on as eft hand en from the facing grieption ils. stand at the points and look towards the crossing, Fig 16.2 and 16.3

Fig 16.2. Line Diagram of Right hand turnout

Ff 16.3. Line Diagrang of Left -hand turnout

crossings:
A 'crossing or 'frog' is a device which provides two Glangerber through which the wheels of the blanges may move, when two rets intersect each other at an angle. (Ag 46.13 and 16.14)

The flanged wheels of the train jump over the gap from "throat' to 'nose' of crossing and to checks the wheel flanges from etriking the nose, the opposite wheel Hanger are guided by use of 'check rates inside the running rale (Fig 16.1)
Component parts of crossing:
(i) A crossing or voe piece, (ti) Point and splice rails
(iii) Wingrard, (cv)check rats
(v) chairs at crossing, at toe and at heel.
(vi) Blocks at throat, at nose, at heel and distance block.
(iii) In some cases, packing below the wing ratels at toe and throat.

Type of crossings:-
Crossinge can be classified as below:
(A) On the basis of shape of crossing. $O \ll$
(1) Acute angle crossing or (2) erossingor frog
(2) Obtuse angle crossing or Diamond crossing.
(3) Square crossing
the basis of Assembly
(B) On the basis of Assembly of crossing
(1) Spring or Movable wing crossing.
(3) Ramped cróssing.
(A) (1) Acute angle crossing (ing 16.13). This type rf crossing is widely used

This crossing is obtained wether a left hand rail of one track crosses a right -hand, rail of another track or vice versa. (Fig th.') ib the angle of inter section of the approach ing rails is acute angle, is termed as Acute angle crossing.. It consists mainly ot points and splice rails, wing rails and check, razes.

Fig 16,13. Acute angle crossing.
(a) Point and splice rails:- An acute angle is formed either by a port rat and a splice rail or by combination of two point rails. These are made of a special steel lie. alloy steel such as carbon steel or manganek
and 16.14 band 16.15 . steel) as shown in Fig. 16.14 and 16.15.

Fegl6.14 Point and splice found
(b) Apair of wing nails (figft.13):.

Fig. 16.15. Two raze joint rails is connected by to lead rarle whereas the other end is framed. The taring is done to facilitate the entry and exit of tangs wheels to the gop.
(c) Apain of check rails. (Ig-16.1).

These are subsidiary marls parallel to the running: rails. They are flared at end for guiding the wheel flanges. They are provided on the opposite sides off the Crossing angle to serve the following purposes
(I) Ta guide the wheel flanges
(vi) To prevent wear and rocking of wheels
(iv) To prevent derartment at level crossing.
(A) -2 Obtuse angle crossing (Fr816.16): This crossing is obtained when leff-hand rat of one track crosses right -hand rat of another track or vice versa at an obtuse angle.

In diamond crossing l, a pair of special crossing is used which is call of "Obtuse crossing". In case of obtuse angle crossing the long wing rails do not carey the wheels as in case of a crete angle crossing, rather act as check rails.

Scanned by CamScanner

A-(3) Square crossing: When two straight fracks cross each other at right angles, they give rise to square crossing. This type of crone, must be avoided on main lines because there is heavy wear ow to dynamic loads. [F816.17]

Fig 16.17 square crossing
(3)-(1) Spring or Movable crossing (t. 816.18) In such a crossing one wing rat is movable, and is held a gat inst the be of the crossing with a strong helical spring. By doing so, it makes the main track continuous and this crossing becomes very useful when there is high speed traffic on main track e and light speed traffic on the branch line or a turnout. This type -1 crossing is used in U. SA, but in India spring crossing is not favoured because there is o danger dit accident, in as of spring failure. -
(B) (2) Ramped crossing in case of complicated yard layout with heavy but slow speed traffic, the throat to nose clearance is negotiated by use of special manganese st eel blocks over longlistanc The wheel flanges roll over this distance extending from a wattle beyond the tatioat to little beyond the nose. Thelopterel of these special blocks is to arranged that the tread bo the whee it taken off the table by the wheel flanges riding the blocks: 80 the entire wheel lob comes on the flange and this type of crossing may be used with sabety tor stow speeds.
$\frac{\text { Types of switch }}{\text { Switch }}$
In stud switch' no separate tongue rain) is provided and some portion) of the track is moved from one side to the otherside.

- In split switch' a pair of stock rail and pair of tongue rail firsts at the hel of the surtch to enable movement of the bree end of the tongue ret are prese if split switches are two types.
(1) Loose Heeltipe:
\rightarrow In this type of split switch, the switch or tongue rail finishes at the heels of the switch to enable movement of the free end of tongue rail. \rightarrow The fishplates madding at the tongue rail may be straight on highly bent. ton que rat ic fastened to the stock rail with the help of a fishing \rightarrow bet block and four bolts.
\rightarrow All the bishbolte in the lead raze at tightened while those in the tongue" \rightarrow Mar are kept loose ore snug to allow tore movement of the to ague structure, the use off these switches is structures, the use of these switches is not perberred.
 the heel of the slortch. but extends further and is rigidly connected. The movement at the to i of the switch is made possible on account of Hexibelity if tongue rail.

Methods of lying \& Maintenance of track
Essential of Track Maintenance

1. The gauge should be correct or with in the specelied limits.
2. There should be no ditlercence in cross levels except on curves, where
cross levels vary in order to provide superelevation.
3. Longitudinal i levels should be uniform.
4. The alignment should be straight and kink free.
5. The ballast should be adequate and sleepers should be well packed.
6. The track drainage should be good formation should be well trained

Railway track can be maintained either conventionally by manually labours or by the application of modern methods of track maintenance. Such as mechanical tamping or measured shovel packing. The major maintenance operations performed in a calender year (12 months) are as follows bor acheeving the above mentioned standards
(1) Through packing
(12) systematic overhauling
(B) picking up slacks

I Through packing:
Through packing is careered out in a systematic and sequent manner as described as follows:-
\rightarrow Opening of road
The ballast is dugout on either side of the rail seat tor a depth of 50 mn (2') below the bottom it the sleeper with the help of a shovel with a wire claw. On the outside, the width ab the opening should extend up to the end of the sleeper.

On the inside it should extend from the rail seat to a distance of $450 \mathrm{~mm}\left(18^{\prime \prime}\right)$ in case of BG, $350 \mathrm{~mm}\left(14^{\prime \prime}\right)$ in case of $M G$, and $250 \mathrm{~mm}\left(10^{\circ}\right)$ in case NG
\rightarrow Examination of raids, sleepers and tasteninge.
The rails, sleepers and bastening to be used are throughlins $2 / 2$ examined. Defective sleepers are removal and 100 se fastenings are tighter. Any kinds in rads are removed.
\rightarrow Square of sleepers:
(a) To do this one of the rails is taken as the slighting rail and the correct sleepers spacing is marked on it.
(b) The position ab the sleepers is checked with reference to the second rail with the help of a T-square.
(es) The sleeper attended to after this defects have been established which may include their being out of square or at incorrect spacing.
\rightarrow Alignment the track:
(a) The alignment of the track is normally checked visually, where in the rail is visually assessed form a distance ab about four un il length or so.
(b) wall ertionls in the alignment are corrected by sieving the track blast lnocerning the cores at the ends and drawing out sufficient ballast of vice ends of the sleeper.
(c) Sicworg is carried out by planting. crowbate into the ballast at an angle not more than 30 from the vertical.
Advantages of Track Maintenance

1) If the frack is suitably maintained, the life of the track as well as that of the rolling stock increases since there is lesser wear and tear of their components.
il) Regular track maintenance helps in reducing operating costs end biel consumption.
iii) Small maintenance jobs done at the appropriate time, such as fighting. a bolt or key, hammering the dog spikes, etc. help in avoiding loss of concerned beltings and thus saving on the associated expenditure iv) When track maintenance is neglected bor along time, it may render the track beyond repair, calling for heavy track renewals hat entail huge expenses.
Gouging:-
The gauge should be checked and an attempt should be enade to provide a uniform gauge within permissible tolerance limbate
2. Systematic overhauling:-

The systematic overhauling of the track showed normally commence abler the completion of one cycle of through packing. If involves the following operation in sequence.
(a) shallow screening and making up of ballast section.
(b) Replacing olamaged or brother fittonge
(c) Including all items in through packing
(d) Making up the cess.
35. Picking up stacks:
stacks are those points in the track whose the running of trans is faculty. stack generally occur in the following cater
(a) stretches of weeding formation
(b) Improperly aligned curves
(c) Portions at track with poor draenages
(d) Approaches to level crossing, girder. bridges ate.

Ho through packing is done during the raining seceson and slacks are only picked up in order to keep the track babe and in geod running condition.

Duties of a permanent way inspector (P W7)
The PWI is generally responsible for the following
\rightarrow Maintenance and inspection of the track to entire satisfactory and safe performance
\rightarrow Efficient execution of all works incidental to frack maintenon.
including track relaying work
\rightarrow Accounts and period cap verification of the stores and tools in his or her charge.
\rightarrow Maintenance of landboundries between stations and at importer stations as may be specified by the administration.
The PWI also carries out inspection of the following fact's of a frack
(e) Testing the track
(b) Inspection of track and gouge
(c) Level crossing inspection.
(d) Point and crossing inspection.
(e) curve inspection
(f) safety of track

In addition to the inspections, a PW I also carries out bollowing
(a) Check the proximity of trees that are likely to domaje the track and get then removed
(b) check the night patrolling at last once a month by train ascoell ar by trolley,
(c) Takes the necessary safety mearunes wold executing maintenana
(a) porch that affects to safety of the frack.
(a) Periodically inject and respective sUR tacks to ensure the safety,
(2) Ensures the creatines of station yards.
(f) Keep: proper records of the training oud of ballast

Bridge Engineering

1. Bridge:. A structure is taciliating a communication route bor carrying road traffic or other moving loads over a depression or obstructor such as river, stream, channel, road or railway. The communication such as may be a railway track, a tramway, a roadway, tool path, a cycle track or a combination of them.
2. High Level Bridge or Non-submersible Bridge:

The Bridge which does not allow the high flong waver to pass over them. Al the Hood water is allowed to pass through its events. In other words, it carries the roadway above the highest flood level in the channel.
3. Submersible Bridge: A submersible bridge is a structure which allows bod water to pass over bridge submerging the communication route. Its formation level should be so fixed as not to cause inderaceptios to traffic during flogs for more than three days at a time nor for more than six Hides in a year.
4. Causeway', If is o pucca submersible bridge which allows foods to pass over it. If is provided on less important routes in order to reduce the constriction cost of cross drainage structure. If may have vents for low water How.
5. Foot Bridge'. The poof bridge is a bridge exclusively used for carrying pedectrair. Cycles and animals.
6. Culverts: When a small stream crosses a road with linear waterway less than about 6 metres. The cross drainage structure so provided is called culvert.
7. Desk bridge: These are the bridge whose flookings are supported at
8. Through Bridge: These are the bridges whose flooring are supported or suspended at the bottom of the superstructure.
9. Semi-Through Bridges:- These are the bridges whose floorings are support ot some intermediate level of the superstructure.
10. Simple Bridges:. They include all beam, girder or fries bridges whose Flooring $i e$ supported at some intermediate level of structure.
11. Cantilever bridge: Bridges which are more or less fixed at one end and bree at other. If can be used for spans varying from 8 m to 20 mh . 12. Continues Bridges: Bridges which continue over two ur more spam. They are wed for large span and where unyielding foundation are
13. Arch Bridge: These are the bridges which produce inclined pressuon on supported under vertical locke. These bridges can be economically used up to spare about 20 metres. The arches may be in the barrel From or in the form of robe.
14. Rigid Frame Bridges. In these bridges the horizontal deck slabis made mondcthic with the vertical abet ments walls. There bridged can mede mod er up to span about 20 metres. Generally this type of bridge it not found economical for spars about 20 metres. Generally, this
type of bridge is not found economical for spang less than 10 metres.
15. Square bridge : These are the bridges:
16. Squares Bridges:- These are the bridges not at right angles to axis of the river.
17. Suspension bridge:. These are the bridges which are suspended on cables anchored at ends.
18. Under-bridge:. It is a bridge constructed to enable one from of land communication over the other.
19. Over bridges: It is a bridge constructed to enable one from of land communication over the other.
20. Class AA bridges: These are bridges designed bor IRC class AA load and checked bor class. A loading Hey y are provided within certan muncipal limits, in a retain existing or k contempled ind ustrial area, in other specified areas, and along certain specific ed hight 21. Class A bridge These are permanent bridges designed bor I.R.C. class A loading.
22. Class B bridges: These are permanent bridges designed for IRC class B loading.
23. Viaduct. It is a tong continuous structure which carries a road or raitway hike Bridge over a dry valley composed of series of span over trestle bents instead of soled prem.
24. Apron:. Ifris a layer of concrete, masonry stone etc. placed ives Hooking at the entrance or out of a culvert to prevent scour.
25. Piers:. They are the intermediate supports of o bridge supersfon. and may be solid of open type
26. Abutndents: They are the end supports of the structure.
27. Curtain walls: If is a thin wall used as a procfection against scouring action a stream.
28. Effective span: The centre to centre distance any two adjacent supports is called as the effective span of a bridge

Components of a bridge

1) Substructure
2) Supersticucture
B) Adjoining structure

1 Substructure:
The structure of the bridge below the level of bearings is known as the substructure. It consists of the following
(a) Abutments
(b) pies
(c) Wing walls

2 Superstructure:
The components of the bridge above the bearing are known as superstructure.
(a) Beam and girders
(b) Bearings
(c) Arch and cables
(d) Parapet wall and Handrail
(e) Flooring

3 Adjoining sticuctures
(a) Approaches
(b) Guard stones

1. (a) Abutments: If is a structure mostly used bor bridged and dams as a substructure at the ends of a bridge span ore dam and on that superstructure. is rest. Bridge with a single span has two abutments that otter vertical and lateral support. It also plays the role of retaining walls to resist lateral movement of the earthen bell of the bridge approach.

The abutment can also be defined by the structure supporting, one side of an arch. or masonry used to resist the lateral forces.
1.(b) Piers: Piers provide intermediate support between two bridger spans. Bridge piers mainly support the bridge superstructure element and transfer the lead to the foundation.

Pier must be strong to handle the horizontal at well al lateral. Piers are known as compression members of the bridge.

1. (c) Wing walls: It is one of the earth retaining structures in the bridge. They are located adjacent to the abutments and act as retaining walls. Wing walls retcuns soil for abutment, roadway and approach embankment, which a a be at a right angle to the abutment or splayed at different angles.
2.(c) Beams and girders:

Both have a similar function to support the roadway and prevent bending. Girder is also one type of beam support. Where loads ane heavy
girders are used instead of be am. support.
Beam has a rectangle cross-section, whereas girders have composed of I- shaped crose-section with two load -bearing flanges and a web bor stabilization.

2.(b) Bearings.

A bearing is provided between the bridge girder and the piercap. The main function of bearing to allow tree movement or vibration of the top surface superstructure and reduce effect stress to reach the bridge foundation
2.(c) Arch and Cables:

Arched and Cable both have specified used. Arches are used for arch bridge construction and cable is used bor suspension, cable -stayed bridge etc. For ditherent types bridge construction arches and cables play a vital role.
2.(d) Parapet wall and Handrail -

The parapet ic one of the salty components of any bridge which prevent the vehicle from falling off where there is a drop. If is also useful bor restricting views, preventing rubbish from passing below and acting as noise barriers.
2. (e) Flooring: concrete or bituminous road.
S. (a) Approaches:

If is structured constructed at the starting or ending bang bridge. Its main function is to provide smooth and easy entry or exit from the bridge. B.(b) Guard stone.

They are restrict used to restrict trattic on a particular e lane or sometimes ar road ealing but are generally positioned to protect a specific object such al a corner ob a street or the side ob a gate.
classification of bridge:
The bridges maybe classified depending upon the following factor
\rightarrow Their function or purpose as railway, highway bot bridges, aqueduct er
\rightarrow Their material of construction used as timber masonity, R.C.C. steel, presfiress concrete etc.
\rightarrow Nature of beebe span such as temporary permanent bridges ate.
\Rightarrow Their relative position 16 bor such as deep bridge, through bridges
\rightarrow Type of superstructure such as deep bridge, through bridge es eth.
\rightarrow Loadings: Road Bridges and eufverts have been classified by 1.R.C. into class AA, class A, class B bridges according to the 10 ad ing they are designed to carry.
\rightarrow span Length: Under this categories the bridges car be classified as

- culverte (span lex than sim i.e. Box tsp: Hume pipe Typ.
- Minor Bridge cepan length : 8 to 30 m) ire. 300 type. Girdentype
- Major Bridge (span length = above than 30 m)
t Degree of redundancy:. Under e this the bridges can be classified as indeterminate bridges
\rightarrow Types of connection: Under t this category the steel bridges can be classis riveted on welded bridged
Requirement of bridge:
An ideal bridge meets the bollowing requirements to tapir the three criteria of efficiency effectiveness and equity
\rightarrow It serves the intend dod function with ut moet safety and convenien.
\rightarrow It ic aesthetically sound.
\rightarrow If is economical.

The site characteristics of an idea bridge has been discussed below 1.) The stream at the bridge site should be well defined and as narrow possible.
2) There should be a straight reach of stream at bridge site.
3). The site should have firm, permanent, straight and high banks
4) To How of water in the stream at the bridges site should be in steady regime condition. If should be tree from whins and cross-curcent.
5) There should be no confluence of large tributaries in the vicincty of bridge site
6) If should be reliable to have straight approach roads and square alignment, re. risht-angled crossing.
7) There should be minimum obstruction of a natural waterways as to have minimum afflux.
e) In order to acheive economy there should be easy availability of. labour, construction material and transport taciluty in the vi inity of bridge site.
a) In order to have minimum foundation cost, the bridges site should be such that no excessive work is to be carried inside the water.
10) At bridge ste if should be possible to provide secure and economical approaches.
it In case of curved alignment the bridge should be on the curve, but preferably on the tangent since otherwise there is a greater fere hood of accident as well as an added centrifugal force which increases the load effed on the structure and well require " modification of design.
12) There should be no adverse environment input.
13) The bridge site should be such that adequate vertical height and watereaty is available.
iii) Underneath the bridge for navigational use.

Bridge Alignment:
Depending upon the angle which the bridge makes with tee axis of the river, the attain aliment an me of two types
(a) square Alignments: In this the bridge is at right angle to the axis of the river.
(b) Skew Alignments. In this the bridge is at some angle to the axis of the river which is not a right angle.
Note:- As far as possible, it is always desirable to provide the square alignment, the skew alignment suffers from the following disadvantage
ai A great skill is required for the construction of skew Bridges. Maintenance sb such type of Bridges is also difficult.
(-i) The water pressure on piers in case of skew alignment is also excess iv be cause if non-uneform How of water undetn neath the bxidp superstructure.
$(i-i)$ The foundation of skew bridge is more susceptible to scour action. Flood Discharge

One of the essential data for the design is far assessment of th maximum How which could be expected to scour at the bridges site during the design period of the bridal. The conventional practice in indra for determination of brood discharge is to use a few conventional formulae or past record
Note: This faulty ofetermination of flood discharge which led to farlure of many hydrautee structures.

As per 1.R.C. recommendation the maximum discharge which a bridge lon a natural stream should designed to pars determined by the following methods:
(a) From the rainfall and other characteristics of the catchment
(c) By use of an empirical of formula applied to that region, on
(it) By a rational method, provided et is possible to evalute for the regions concerned the varcoles factors employed in the method.
(b) From the hydraulic characteristics of the stree am s ushas cross-section area, and slope of the stream allowing tor velocity of flow.
(c) From the records available, if any, of discharge observed on the stream allowing per velocity of blow.
Empirical Methods For Estimation of flood discharge
In these methods are basin or catchment is considered moly. All other factors which influence peak How are merged in a constant.

A generally equation may be followed in the form

$$
Q=\left(M^{n}\right)
$$

Herr, $Q=$ peak flow or rate of maximum dischangs
$C=$ a constant for the catcherent
The constant for catchment and is arrived an index, after talung the follow mg

Factors into account:
(A) Basin characteristic
(a) Area
(b) shape
(c) slop
(B) Storm characteristic
(a) intensity
(b) Deration
(c) Distribution

These methods do not take frequency of f bod into considenatis
Limitations
These methods cannot be applied universally
Fixing of constant is very difficult and exact theory can n ot be put forth for ihs selection.

1) Dicker's formula

$$
Q=C \cdot M^{3 / 4}
$$

Here, $Q=$ Discharge in cu.m/see

$$
c=a \text { constant }
$$

Ryvi), $M=$ areas catchment in sq.K.
3 " "formula

$$
Q=C \cdot M^{2 / 3}
$$

Here, $Q=$ Discharge in cum $/ \mathrm{sec}$
$C=6.74$ for cereal wo thin 24 km from coal tor,
$C=8.45$ for area within $24-161 \mathrm{~km}$ from coosfop
$c=10.1$ bor limited hilly area.
In worst cases C goes up to 40.5
$M=$ area of catchment ins $q \mathrm{~km}$.
3) Inglis formula

This formula used only Mahastra state and here there, different cases are taken into consideration
(a) For small areas only (It is also applicable for fan-shaped

$$
Q=123.2 \sqrt{\mathrm{M}}
$$ catchment)

(b) For areas between 160 to 1000 square $k m$.

$$
Q=123.2 \sqrt{M}-2.62(M-259)
$$

(c) For all types of catchment

$$
Q=123.29 \sqrt{M+10.36}
$$

In all equation, $M=$ area of catchment in $s q \mathrm{~km}$,
4) Newab Tang Bahaduris formula

$$
Q=C(M / 2.5 q)(a-b \log A)
$$

Here a, b and c are constant

$$
\begin{aligned}
a & =0.993 \text { and } b=1 / 14 \\
c & =59.5 \text { for North } \ln d_{1} a_{1} \text { or } \\
& =481 \text { for South India }
\end{aligned}
$$

5) Creager's formula:

$$
q: \mathbb{C} \cdot M_{n}
$$

Here $q=$ the peak How per sq km of a basin
$M=$ area of catchment in $\mathrm{sq} . \mathrm{km}$ and $(n$) is some index
By multiplying both sides of the above equation e are of the basin M. we get

$$
Q=C-M^{n+1} \text { where } Q \text { is peak value }
$$

Equation given by Creager, Justin and Hinds 1 s .

$$
Q=46 . \mathrm{ch}^{(0.849 M-0.048)}
$$

6) Khosla's Formula

If is a rational formula. If is based on the equation

$$
P=R+L
$$

Here, R is round off, P is rainfall and L is $R=P-L$
$L=4.82 \mathrm{Tm}_{\mathrm{m}}$ where, L is in m and T_{m} is in centigrade
$R=p-4.82 \mathrm{Tm}_{\mathrm{m}}$
7) Besson's formula

This formula is very rational and can be used in any case.
Here, $Q_{m}=$ peak Here, $Q_{m}=$ peak How expecte

$$
Q_{m}=\left(P_{m} \times Q_{r}\right)\left(P_{r}\right)
$$

$$
Q_{r}=\text { some observe o peak }
$$

bide

$$
P_{r}^{\prime}=\text { observedraintaly }
$$

$$
P_{m}=\text { expectedrainfas }
$$

Rational Methods for Estimation of Hood discharge
\approx This methodre applicable for deter mination of Hood discharge for small culverts only In order th arrive ut a rational approach' a relationship has been established between rainfall and runoff under various circumstances. The size of flood depends upon the following factors.

Ce limate on Rainfall factors. This include
(a) Intensity (b) Distribution, and k) Duration of Rain fall
(ii) Catchment Area Rector, This include
(a) Catchment Area (b) its slope (c) its shape, (b) ponosefy if soot.
(e) vegetable cover., ff) initial slate of wet ness

In order to establish a relationship between the intensity and duration of a storm, a curve has been plotted as shown.

Let, in an individual stiteam:
$F=$ total rainfall in cm .
$T=$ duration of rainfall in hours
$I=$ meas intensity of rainfall in $\mathrm{cm} /$ hour taken over the duration of the storm
Then $l=F / T$
it $i=$ intensity obraintall in cm per hour, obtain for small interval (t ' as shown in big $31: 1$
since the intensity is not uniform throughout the mean intensity (i) obtained over the time interval (t 'will be higher than the mean intensity ' l^{2} 'taken overt the whole period ' T '. The intensity of a storm is some inverse function ob cts duration. If has been reasonably well established that:

$$
\begin{aligned}
\frac{i}{t} & =\frac{T+c}{t+c} \\
\Rightarrow i & =\frac{F}{T}\left(\frac{T+c}{t+c}\right)
\end{aligned}
$$

Hence $c=$ a constant
$F=$ total rainfall

Waterway
The area through which the water flows under a bridge superstructure is known as the waterway of the bridge. The linear measurement of thee area along the bridge is known as the linear waterway. The linear waterway is equal to the sum of all the clear span. The may be called an artificial linear waterway.

Due to the construction of a bridge the natural watereoy gets contracted thereby increasing the velocity of flow under a. ridge. This increase velocity results into leading up fwaten on the upstream of the river br e stream known al Afflux. Economic spar:- the economic span of a bridge is the one which reduces the overall cost of a bridge to be minimum. The overall cost of a bridges depends upon following faction
a) Cost of material and it nature:"
b) Availability of skilled labour
c) Span length:
d) Nature of stream to be bridge ρ^{-}
e) climatic and other conditions

Afflux.
When a bridge is constructed, the structure such as abutments and pirn cause the reduction i of natural waterw an, area. The contraction of stream is desirable because it leads to tangible saving the the coetspecially for all urial stream whose natural surfaces width is to large than required for stability Therefore, to carry the maximum flood discharge, the velocety under abridge increase. This increased veloatygever rise, to sudden: heading up of water on the upstream side of the streaon, The phenomenon of heading up of water on the upstream side of the stream is known as Afflux
Afflux is cal culated by one of the following formula r
(A) Mariniman's Formula.

$$
h_{a}=\left(v^{2} / 2 g\right)\left\{\left(A /(a)^{2}-(A / A)\right\}\right.
$$

Here, $h_{a}=$ Afflux in meters
$V=$ velocity of approach in meters per second
$A=$ Natulal waterway area at the site
$A=$ reontracted area in square metes
$A=$ The enilatige d area upstream of the bridge square meter.
$C=$ Coefficient of Discharge $=0.75+0.35(a / A)-0.1(c / A)^{2}$
(A) Molesworthis Formula.

$$
\text { ha }=\left(\frac{v^{2}}{1+9+9}+0.015\right)\left(y^{2}-1\right)
$$

Henri. V, A and a base the same meanings as in Morkriman
clearance
To avoid any possibility of traffic striking any structural part clearance diagram are specified. The home rontal clearance should be the clare width and vertical clearance of the clear height, available for the passage of vehicular al shown in the clearance diagram in the org. below.

Horizontal
k-Horizontal clearance

a bridge
clearance diagram for road bridges
Free Board.
Freed board is the vertical distance between the designed high blood level, allowing for the afflux, if any. and level of the crown of the bradge as if lowest point.
it is essential to provide the free board in all types of heights for the
reasons. following reasons.
\rightarrow Free board is required to allow floating debris, fallen tree trunks an approaches waves top pase under the bridge.
If is essential to provide the freeboard in all types of bridge for the vollowing reasons:
\rightarrow Freeboard is required to allow Hooting debris, fallen free trunks and approaches waves top pass under the bridge
\rightarrow Freeboard is also required to allow for the efflux during the maximum blood discharge due to contraction of waterway.
\rightarrow Freeboard is required to allow the vessels to cross the bridger in case of navigable rivers. The value of free board depende upon the types of the bridges.
Collection of bridge design data:-
For a complete and proper appreciation of the bridge project the engineer in charge of the investigation should carry out studied regcendin its financial, economic, social and physical tease belety, The eletailed information to be collected may cover loading to be used for desrgas based on the present and anticipated future traffic, hydraulic dato based on stream charaderistics, geological data, scebsoil Alta, climatic eta, alternatives sites, aesthetics, costs etc.

The following drawing containing information as indicate ed should be prepared

1. NDEX MAP
2. CONTURE SURVEYPLAITV
3. SITE PLAH:
4. CRCOSS-SECTIOLA
5. LONGITUDINAL SECTIONV
6. CATCHMENT AREA MAPC
7. SOIL PROFILE -

Design elata for major bridge:
A-General plata:
I INane of the road and its classification
(ii) Name of the stream
(iii) Location of nearest G.T.S. bench mark and its reduced lever
(iv) chainage at centrelene of the's rear
(v) Existing arrangement for crossing the stream.
(0) During Monsoon, (b) During are season
(vi) Liabrin fy of the site to earthquake of istur Dance

B-Catchment Area and Runoff Data:
(c) catchment Area
(a) Hilly Area
b) In plains
(Ex) Maximum recorded interkity and frequency of rain tall in catch o.
(ii-) Rainfall in cementer per year in a reason
(i) Length of catchment in Ky metres
(v) Width it catchment in kilometres
(vi) Longitudinal slope of cat chment.
(vii) cross slope of catchment
(viii) The nature of catchment and it shape

C- Data Regarding inature of stream
sub-scentace investigation
subsurface investigation is essential for to know the properties of the bridge site soil. The field and laboratory investigations required to obtain the necessary/soi/ data bor the oletign are called soil exploration.

The principal requirements of a complete investigation can be summarized as follows

1. Nature of the sot deposits up to sufficient depth.
2. Depth, thickness and composition of each sori/ stratum.
3. The location of ground water
4. Depth fo rock and composition of rock.
5. The engineering properties of soil and rock stats that affect the design of the structures.

In exploration programme the extent of distribution of different soils both in the horizontal and vertical directions can be determine by the following methods.

1. By use of open pits
2. By making bone holes and taking out samples
3. By sound dings
4. By use of geophysical methods

Equipments for labonatony wonk:
The disturbed soil sample as taken from bed level to scoceri
level at every one meter interval or at depth whenever strata changer are tested to determine the following properties:

1. Liquid limit, plastic, Limit, and plasticity index.
2. Organic Content
3. Harmful salts
4. Sieve Analysis
5. sols factor.

The undisturbed soil samples as taken below the scour level to a level where the pressure is about 5% of the pressure at the base are tested to determine.

1. Particle size analysis
2. Values of cohesion less and angle of internal friction by shear ten
3. Compression index and pre-consolidation pressure by consolidation terf
4. Density specific gravity and moisture content.

Advantage of sub surface Investigation:
There are mainfold advantages of carefully planned investigation programme. These can be summarized as below:

1. A suitable and economical solution can be worked owlet.
2. The construction schedule can be properly damaged.
3. The extent and nature of difficulties likely to be met with can
4. The determined. and amount of settlements can be determined.

5 . The variation on the water-table of the pressure of anticise. pressure can be found out.

Depth of Scour:
Depth of scour (D) is the slept of the ended bed of the river, measured from the water level bor the discharge considered. Mlell-laid boundation is mostly provided in road and railway bridges inghdia over large and medium-cized rivers. The age-old lacey inglis method issued for estimation of the design scour depth around bridge elements such as pier, abut ment, guide bank. spur and groyne. Codal provision are seen to produce too lairs a scour depth around bridge elements resulting in bridge. substructure that trad to increased construction costs.
Limitations that exist in the codes of practice are illustrated in this paper wing examples. The methods recently developed for estimation of the scour are described. New rat we and road bridge are required to be built in large number n in the near future darioss several rivers to strengthen such infrastructure in the country. If is strongly belt that provision in the existing codes it practice for determination of design scour depth require immediate review. The present pages provides a critical note on the practices followed in India rom estimating the design scour depth.
Indian practises on estimation of design scour deptri

1. Larey-Ingles method
2. Comments on Lacey's method

- The probable maximum depth of scour for design of boundatr and training and protection works shall be estionated wheidering local condition.
- Wherever possible and especially for Hash rivers and those with heeds of gravel or boulders, sounding for purpose vianity of the site propth of scorer shall be taken in the are bet t taken during or immedr truly, of fer soundings. before the scour holes have had time +0 split up a floc In calculating design depth of scour, allowance shappreeiobly node in the obseitied depth for in creased scow r resulting
(i) The design discharge being greater than the Hood drischang observed.
(ii) The increase in velocity due to the construction of waterway caused by construction of the bridge
(iii) The increase in scour in the proximity of piers and abutment.
- 4.6.3 In the case of natural channels. flowing in alluvial beds where the width of waterway provided is not leer than Lacege regime width, the normal depth or scour (D) below the foundation design discharge ($Q f$) level may be estimated from Lacey' formula ind icated below.
$D=0.473(Q / f / f)$
where D is depth in meters Qt is in curer and ' f ' is Lacey's regime width bor of br where it is narrow and
deep as in the case of incised rivers and has sandy bed, the normal depth of scour may be estimated by the following formula:

$$
D=1.338\left(Q_{t}^{2} / f\right)^{1 / 2}
$$

Where ' Q_{f} ' is the discharge intensity in cubic meter per second per meter width and f is silt factor. The silt factor 'f' hall be determined bor representative sample of bed material collected from scover zone using the formula:-f $=1.76 \sqrt{\mathrm{~m}}$ where m is weight mean elameter of bed material particles in mm.

Values of " T ' of ditberent types of bed material met w with are given below.

given below		
Types of bed	ipadarial weighted mean did of particle (mm)	Value of ' f '
(i) Coarse sit	0.04	0.35
(ii) Fine sand	0.08	0.50
	0.15	0.68
(iii) Medium sand	0.3	0.96
	0.5	1.24
(iv) Coarse sand	0.7	1.47
	1.0	2.76
	2.0	2.49

The depth calculated (vide clause 4.6 .3 and 4.6 .4 above) shall be increased as indicated below, to obtcun maximum depth of scour for design of foundation protection wonks and training cote

Nature of the river
Depth of scour
In a straight mirach
At the moderate bend cong ions erg. along apron of guide bund 1.5D
At a severe bend
Ht a right angle bend or at nose of pies
In severe wines e.g. against mole head of 2.5 D to 2.75D
guide bund
Bridge Foundation
A foundation is the part of the structure which ic in direct contact with the ground. If transfers the load of the structure to the s out below. Before deciding upon uts size, we must ensure that:
(E) The bearing presicue at the base does not exceed the allowable 802 pressure.
(iii) The settlement of foundation is within reasonable limits
(riv) Differential settlement is to limited as not to cake any damage
to the structure.
to the structure.
(a) Broadly foundation may be classétied under two categories io.

1. shallow Foundation.
2. Deep Foundation.
3. Deep Foundation.

Shallow Foundation:
be shallow it Accords depthing to Terzaghis, a boundation is said to Dep Foundation. According to Terzaghi, a foundation is seeid to deep, the depth is greater than its wed th and it cannot be prepor by open excavation.
Types of Bridge Foundation.
The selection of foundation type suitable for a particular site depends on the following considerations
i) Nature of subsoil
2) Nature stand extent of difficulties erg. presence of boulder buried tree trunks etc. Likely to be met with and
3) Availability of expertise and equipment

Depending upon their nature and depth, bridge foundation can be categories as follows

1. open foundation
2. Raft foundation
3. Pile foundation
4. Well foundation

1 open Foundation in bridges.

1. An open foundation or spread foundation is a type -b bound at it and can be laid using open excavation by allowing natural slopes
2% This type of foundation is practicable for a depth of about 5 m and is normally convenient above the water table.
$3)$ The base of the pier or abutment is enlarged or spread
to provide ind ideal puppont. to provide individual dupont.
4) since spread foundations are constructed in open excavation therefore, they are teemed as open foundation
5) This type of foundation is provided for bridges of modenat height brit on stefficiently form day ground.
of "the piers in such cases are usually made with slight batter and provided with footings widened at bottom. Where the ground is not st off the bearing surface is further extended by a wide layer of concrete at bottom
2 Raft foundation:
1. A raft foundation or mat is a combined footing that covers the entire area beneath a bridge and supports all the piers and abutment.
2. When the allowable soil pressure below vi low. on bridal toads are heavy, the use if spread booting wow cover moms one half of the area, and it may prove anomie economical to use of roof foundation
3) They are also used where the soil mass contain compressible lenses so that the differential settlement would be difficult to control.
u) The raff tends to bridge over the eratic eleposots and eliminatethe differential sethemente.
4) Raft foundation 2 also used to reduce the settlement above highly compressible sols by making the weight of bridge and raft may undergo large settlement without causing harmful differential settlement for this reason, almost clouble settlement of that permitted for booting is acceptable for rats.
5) Usually when hard sot is not available within 1.5 to 2.5 m ref foundation il adopted.
6) The raft is composed of reinforced concrete beams a relatively thin slab undertreath.t-
7) Pale foundation in Bridges
1. The pret foundation is consficuctions for the foundation of abridge pier or abutment supported on pierre.
2. A pete $v e$ an element of construction composed if timber, concrete or citecl on combination of them.
3. Pole foundation may be defined as a column dupont type of foundation which may be cast-in-situ or precast.
4. The piles may be place separately on they may be placed in to rm of
5. Thess rape of construction is adopted when the or abutment.
6. This type of construction us adopted when the loose soil extend to great depth.
7. The load st the bridge is transmitted by the piles on hard stratum below or if is resisted by the friction developed on the sides if peter.

Classification of piles:
Piles are broadly classified into two categonie
i) Classification based on the function
$r_{i}+$ classification based on the materials and composition classification based on the function
\rightarrow Bearing pile
\rightarrow Friction pile
\rightarrow Screw pile
\rightarrow Compaction pile
\rightarrow Uplift pole
\rightarrow Batter pile
\rightarrow sheet pile.
classification based on the materials and composition
\rightarrow Cement concrete piles
\rightarrow Timber pales
\rightarrow steel piles
\rightarrow Sand pule.
\rightarrow Composite pile
(iv) Well Foundation in bridges
(ब) Well foundations are commonly used for transferring heavy. toads to deep strata in river on sea bed fore bridges, thansmista ${ }^{2}$ s towers and labour structures. The situation where well foundation is are resorted are as below as) Wherever consideration of scour or bearing capacity require foundation to be taker to depth of more than 5 M bell g ground level open foundation becomes uneconomical Heang excavation and dewatering problem coupled with effort involve in retaining the soit mable the open. foundation costlier in comparision to other type of foundation
(b) Soil becomes loose due to excavation around the open foundation
and hence susceptible to scouring. The is avoided in well foundation can always be left how thereby
considerably reducing bearing pressunle transmitted to the considerably reducing bearing pressure transmitted to the foundation material. This is very important in sorts of pore bearing capacity, particularly in clayey soils. In other type of foundation, the soil displaced is occupied by solid masonry.
concrete which are heavier than the soil displaced and hance this does not give any relief in respect of adjusting bearing capacity. However in case of well foundation the's is easily acheived because of cellular space left inside the well. Cajesion:-

The caisson is a structure used for the purpose of placing as foundation in correct position under water. The term caissons is derived from the French word 'caisse' meaning a box. If is a member with hollow portion, which after installing in places by any means is filled with concrete or other material. Caisson are prepared in, sandy sots the caissons can be divided in the following three groups.
a. Box Caissons
b. Open caissons or Wells
c. Pneumatic caisson

Well components and their function

- Cutting edge: If provides a comparatively sharp edge to cut, the soil below during sinking operation. It is usually consicts of a mild steel equal angle of side 150 mm .
(2) Curb. If has a twe-ford purpose. During sinking ot acts as an extension of cutting edge and also provided Support to the Well staining and bottom plug while after sinking et transbens the load to the soil below. If is mads up of reinforced concrete using controlled concrete of
grade M200.
\rightarrow staining: If is the main body of the well. It is serves dual purpose. It acts as a cofferdam during sinking and structural.
member to transfer the load to the soil below ofterwand member to transter the load to the sol below offerwand. The staining may consists of brick masonry or reinforced concrete. The theckress of staining should be less. than 4.5 cm not less than that given by equation.

$$
t=k\{(H / 100)+(D / 100)\}
$$

Here $t=$ minimum concrete staining thickness
$H=$ well depth below bed
$D=$ External diameter of well
$K=$ a constant which is 1.0 for sandy strata
\rightarrow Bottom plug- It main functions is to transfers load from the seining to the soil below.
\rightarrow sand plug: Its utility is doubffiel. If is supposed to afford some relief to the staining by transforming directly a portion of load from well cap to bottom plug
\rightarrow Top plug: - The opinion is divided about the top plug, it, at least, serves as a shuttering for laying well cap.
\Rightarrow Reinforcement: - It provides requasere stivengith to the stinctur
\rightarrow Well caps:- Lis is needed to transfer the loads and moments from the pier to the well or well below. The shape of well cap is similar to that of the well with a cantilever of about 15 cm . Whenever 2 or 3 wells of small diameter are needed to support the substructure, the well cap designed as a slab nestingorer the well or wells with partial fixity at the edges of the wells.
\rightarrow Depth of well foundation: As per I.R.C. Bridges code (par tin), the depth of well foundations is to be decided on the following consider.

1) The minimum depth of foundation below the H. A-L Should o be $1-33 . D$, where D is the anticipated may. Depth of scour below. H.F. [. Depth should provided proper grip according to some rational formula.
2) The may bearing pressure on the subsoil under the foundation resulting from any combination of the loess and forces except wind and seismic forces should not exceed the safe bearing capacity of the subcor after takingento account the effect of sour.
with wind and seismic force l in addrion, the may. Bearing pressure should not exeed the safe bearing capacity
of the subsoil by more than 25%
3) While calculating max. Bearing pressure on the foundation bearing layer resulting from the worst combination of dined. forces and overturning moments, the effects of a passive resistance of the canthi an side of the foundation structure may be taken into account below the max depth of the scour e ante.
4) the effect of akin friction may be allowed on the portions below the max depth of scour. Ale cordingly for dreading the depth of well foundations, we required correct estimation of the following
1. Max. scour depth V
2. Sate bearing capacity

3 skin friction
4. La feral earth support below max. Scour level

If is always desirable to bey the level of a well foundation on a sandy strata with adequate bearing capacity. Whenever a thin stredtum of clay occusting between two layru.ob sand is met with, in that case well must be pierced through the clayey strata, if at all foundations has to be laid on clayey layer it should be ensured that the clay is stiff.

Design loads and Forces. The forces acting on a bridge structure, to be considered for the design of a bell boundatior are as follow
vertical
(c) Dead load
(7) Live load
(iii) Buoyancy

Horizontal
(c) Wind force
(i) Force due to water currents
(iii) L. ongifudinal forces caused by the tractive effort of vehick (iv) by braking effect of vehides
(iv) 1-0ngetudinal bonce on account of nesistance of the beano against movement due to variation of temperzatun.
(v) Seismic bonce
(vi) Earth pressuin.
(vi) Centriegugal force

The I.R.C. Bridge codes stipulates the megnetude of abuts loads and force. The magnitude, denection and point of application of all the above forces can be resolved into two horizontal force P and Q and a single vertical bor W under the worst possible combinations,

Piers:-
Piers provide vertical supports for spans at intermediate points and perform two main bunctions: transferring superstructure vertical loads to the foundations and resisting horizontal forces acting on the bridge. Although piers are traditionally designed to resist vertical loads. it is becoming more and more common to design piers to piers high lateral loads caused by seismic events. Even in some low seismic corneas, designers are paying more attention to the ductility aspect of the design., piers are predominantly constructed using reinboriced concrete. Steed, to a lesser, degree, ic also used for piers. Steel tubes filled with concrete (composite) columns have gained more attention recently.

Fig. 1: Typical cross-section shapes of pens for o overcrossing or viaducts on land
Pier is usually used as a general term for anytype of substructure located between horizontal spans and foundation However, from time to time, it is also used particular y for a soled E, $\because \quad \therefore, \because, \therefore$
:":- wall in order - disanglish it from column of do went. from a structural point of view, a column is o member that resist th lateral force mainly by flexure action whereas a pier ic a member that resists the lateral force mainly by a chear mechanism. A pier that consists of multiple columns is offed called a bent.

There are several wage of defining pier types. One is by its structural connectivity to the superstructure, monolithic or cantilever. Another se by its sectional shape, solid or hollow, round, octangonad, hexagonal or rectangular. It can also be distinguished by its framing configuration single or multiple columns bare hammerhead or pier wad selection of the type of piers for a bridge should be based on functional, structural and geometixic requirements. Aesthetics is also a very important factor of selection since modern highway bridge are part of a katy, landscop. Fig i shows a collection of topical cross-section shapes too overcrossings and viaducts on land and A.8.2. shows some typical cross section trapes for piers of river and watencer crossing. often pier types are mandated by government agencies ar owners. Many state elepartment of transportat. in the United states have their ow stand and colum shaper.

- Broadly piers are classified under following two categories

2. open pier

Solid wall pions as shown in Fig. 3 a and 4 are otter used at water crossing since they can be constrineted to proportion. that are both slender and stream lined. These feature r lent themselves well bor providing minimal resistance to floors Hows
Hammerhead piers as shown in Fig' s-b are often bound in urban areas where space limitation it a concern. They are used to support steel girder or precast preitressed concrete experistructures; They are aesthetically oped ins They generally occupy less space, thereby providing more of room bor the traffic underneath. Standards for the use of hammerhead piers are often maintained by ind viduas traneportation department. A column bent piers consists of a clep beam and supporting column forming africme.
column bent piers as shown in Fig 3-c and Fig 27.5 can either be used to euppoirf a steel girder superstructure or to be used as an integral pier where the calf in place construction technique is used. The column can be either circular or rectangular in classed They are by tar the most popular forms of piers in the modern highary sifstem:
Apcle extension pier: consists of a drilled shaft eu s the foundation and the circular column extended from the shaft to for m substiv An obvious advantages of this type of pier is that it occupied minimal amount of space. Wielening an existing bridge in sir instances may require pile extension because limited space
precludes the use of other types of foundation.

(a) Solid wall. pier

(b) Hammerhead pier

(c) Rigel frame pier

Fug. 3

(a) Bent bor precast girds.

Abutment s:
They are the end supports of the sreperstructure, retaining. earth on their back. They are built either with masonry, stone oi: brick work or ordinary mas concrete or rein forced co ncreste The top surface of the abutment is made that when the supirgtia ie of trusses of girders or semicircular arch. In case of segmental or elliptical arch types of ereperstructure, the abutment top is made skew. Weep holes are provided at difterentiol levels through the body of the eubutment to drain of the retained earth. The salient features of bridge obletments are listed below:
(a) Height: The height of the abutments is kept equal to that of the piers
(b) Abutment batters: The water face of the abutment is usually Kept vertical or could be given a batter of 1 in 12 to 1 in 2 y Lin 6 or may be stepped down,
(c) Abutment width: The top width of the abutment should provide enough space for the bridge seof and for the construction enough elwarf wall to retain earth upto the approach level.
(a) Length of Abutment. The length of abutment is kept af least equal to the width of the bridge.
(e) Abutment cap: The design is similar to that of pies cop.

Abutments can be spill-through or closed. The spill through abutment generally hat a substantial berm to help restionn embankment. settlement at the approach if the structure.

Approach embankment settlement can also be accompanies by approach slabs to eliminate bumps at the bridge ends, closed abutments partially or completely retain the approach embankments from spieling under the span, and bridges of several spans required expansion at the abutment. Therefore, they ans usually required to rest sf the longitudinal forces that derelles
broadly, abutments ere classified under the following

1. Abutments with wing wats
2. Abutments without wing walls

Abutments with wing wall.
(a) straight Wins wall.
bs splayed wing wall
(e) Return wing wall

Abutments without wing wall ic
(a) Buried Abutment.
(b) Box Ablotments
(is) Tee Abutment-
(a) Arch Abutment

Dates. 14/10/20
Buried Abutments: This type of abutments is generally built prior to. placing of the fill. Since it is filled on both sides the earth pressure is 10 superstructure erection can be begin before placement of fill.
Box Abutments: The employs a short span of bridge built integral wis columns to act as a frame and resist earth pressure of the approcches It is most often used overpass work where the short span may be employed for pedestrian passage (see bis)
Tee Abutments: The type looks like Tinplain and has now become, absolute (see big)
Arch Abutments: The type of abutment is used where arches are employed because of their economy in certain conditions. The high inclined skewback thrusts are difficult to handle unless the abutme: can be seated in rock. Therefore, they are often used for span over gorges (see fiji)
N ing Wall
In a bridge, the wing walls are adjacent to the abutment and act as retaining weals. They are generally constructed of the same material as those of abutments. The wing wall can either be attached to the abutment or be independentatit. Ming walls are provided at both ends of the abetments to return the earth filling of the appirochches. Their design period design depends upon the nature of the embankment and does not depend upon the type or parts of the bridge

The soil and fill supporting the roadway and approach embankment are retained by the wing wall, which ran be at er right angle to the abutment or splayed at different angles. - The wing walls are generally constructed at the same time and of the same material! at the abutment:
classification of wing walls
Wing walls can be classified according to their position in plain with respect to banks and abutments. The class ificatio is as follows.
i) Straight Wing walls: They are used for small bridges, on drain with low banks and bor railway bridges in cities (weep holes ans provided
2) splayed wing wall. These are used for bridger across reval. They provide smooth entry and ext to the wader. The splay is usually 45°. Their top width is 0.5 m , back batter 7 in 120 and back better 1 in 6, weep holes air provided.
3) Return wingworle: They are used when e banks ane high and hand on firm. Their top width is 1.5 m) and face is veiticat
to the and back battered 1 in 4 . Scour c can be a problem for wing wall ans, abutments both, as the water in the stream erodes the supporting sol.

$$
c h .1
$$

Masonry Bridges:
Permanent Bridges
Bridges unit the spandrel, which supports the bridge roadway. The spandrel is made from gravel or crushed stone backing held in by lateral (side) walls made of concrete masonry or stonework or is the form of an open main lo cd bearing sfructor are made of natural stone, brick or concrete blocks. Such a bridge is always arched, with massive supports. The main load-bearin element of a masonry bridges is the arich, overt which is structure of small arches resting on crosswalks. The advantages of a masonny bridges are its archetectural attractiveness and cts durability Masonry bridge l are known that have been in use for mons, that 1,000 yeane. The basic short coning that limit the use of masonny bridges are their complexity and labor intensiveness of construction, Their simplicity, economy and ease with which pleasing appecenance can be obtained make them suitable for this purpose

Classification of steel bridges
steel bridges are classified acconding to the type of traffic carckied
: the type of main structural system
\therefore the position of the carriage way relative fo. the main structural system.
These are briefly discussed in this section
classification based on typerf traffic carried
Bridges core classified as. Highway or rod as bridge's Railway or mail bridges Road-cum-rioil brides

Classification based on the main structural system
Many different types of structural systems ane used in bridges depending upon the span, carriageway width and types of traffic. classitication, according to maceio of main load carting system, is as follows
\&) Girder bridges:- Flexure or bending between vertical support is th main structural action in this Hype- Girder bridges mag be either solid web girders or truss girders or box gingers. plate girdler brides are adopted for simply supported spans less than 50 m and boy gender for continuous spans up fo 250 m . cross-sections of a typical plate girder and box girder bridges are shown in $\mathrm{Fig} 72 \mathrm{~F} \cdot \mathrm{a}$) and $\mathrm{Fig7} 20$ respectively, Truss bridges [Fee fig $7.2(\mathrm{c})]$ are settable boil the span range of 20 m to 375 m . Cantilever bridges have been built with success with main spars of 300 to 550 m . They may be further, sub-druy into simple spans, continuous spans and cuspended and-cantilevened spans as inlutroated ir F87-3

Fig $7.2(a)$ plate gender bridge section

Fig 7:2(b) Box ginden bridge section

Fa 7.2(c) Some of the trusses used in steel bridge.

(b) Continuous spangender. bridge

(a) Discontinuous span ginger bridge,

Fag7.3 Typical girder bruges
(ii) Rigid frame bridges:- In this type, the longéfudinal' girders are made structurally continuous with the vertical or inclined supporting member by means of moment carrying joints. [fig gets, Flexure worth some axial force is the main forces in the member in this type Rigid frame bridges are suitable in the span range of 25 to 200 rl .

Fig 7.4 Typical rigid blame bridge
(ti:) Arch bridges
The loads are transferred to the foundations by and acting as the main structural element. Axial completion in and. rib is the main force, combined with some bending. Arch bridge are competitive in span range of 200 m to 500 m .

(iv) Cable stayed bridges -Cables in the vertical or near verticd plane support the main longitudinal girders. These cables are hungtorom one or more tall towers, and are usually anchored at the bottom. to the gender. Cable stayed bridger are economical when the. the girder. Cable stayed bridger are econsle stayed bridge
span tic about 150 m to 700 m . Layout of cable 1 .
are shown in 7.6

Layout of cable stayed bridge
(v) suspension bridges. The bridger deck is suspended from cables stretched over, the gap to be bridged, anchored to the gro and of at two ends and paling overeat tall towed to erected at or near the two edges of the gap. Currently, the suspenecron prides is best solution box the long span bridges. For shows a typical guppnit

Dater. 19/10/20 Types of concrete bridges
Arch Bridges:
Arch bridges derive their strength from the bact that vertical lode on the arch generate compressive vorces in the arch ring, which ic coresfructed of materials will able to withstand these forces. The compressive force in. the arch ring result in inclined thrust at the abutments, and it is essential that arch abutment e are well founded or buttressed to resist the verifical and horizontal components of these thrivsts. If the supports spread apart the arch falls olo wo. Traditionally, arch bridges were constructed of stone. brick or mass concrete. since these materials arse very strong in compinession and the arch could be configured so that tensely stresses did not develop. Modern 'concrete arch bridges u til 2 e prestressing or reinforcing to resist the tensele stresses which can develop in slender archrange.

Reinforced slab -bridges
For shout spans, a solid reinforce ole at concrete slab generally chast-in-situ rather than precast, is the simp let design. If is also cost-effective, since the blat, level staff soffit means that false work and formwork ane also simple. Reinforcement, too is'vancomplicated. With teroes spars, the reinforced slab has to be thicker to carry the extra stiresses under loud. The le extra weight of tho slab otself then beconer a problem which can be solved in oo ne of two wage. The first is to use prestressing techniqus and the second is to reduce the dradweight of the slab by including voids, of tern expanded polystyrene cylinder up to about. 25 m span such raided slabs ane none
economical that prestressed slabs.
el

Beam and slabkridge: Beam and slabbridjes are probably the most common form of concrete bridges in the UK today, thanks to the success of standard precast piretinessed conalete beams developed originally by the pinestilessed concrete. Development Group (cement s concrete association supplemented later by alternative-deesigns by others culminating in the y- beam introduced by the Prestreked concrete Association in the late. $-1980 ;$

They have the virtue of simplicity, economy wide availability of the standard sections, and speed of erection. The precast beams are placed on the supporting piers or abutment, us wally on rubber bearings which are maintenance fine. An in-situ reinforced concrete deckslabie then cast on permanent shutters sis which spans between the beams.

The precast beams can be joined together at the supports to form continuous beams which are structurally more efficient. However, the is not normally done becauer the corf involved are not justified by the increased efficiency.

Simply supported concrete beam and slab bridges are now giving way to integral bridges which offer the ad vantages - les es and lower maintenance due to the elimination of expansion joints and bearings.

Techniques ot construction vary according to the actual design and situation of the bridge, there being three main types.

1. Incrementally launched
2. span-by span
3. Balanced cantilever
incrementally launched:
As the name suggests, the incrementally launched technique creates the bridges section by section, pushing. the structure outwards from the abutment towards the pier. The practical limit on span for the technique is arr and 75 m .
Span-by-span:
The span-by-span method is used bor multi-span viaducts where the individual span can be up to 60 m .

These bridges are usually constructed in-situ with the false work moved forward span by span, bul can be built of precast sections, put together as single spans and dropped into placer span by span.

- Balanced cantilever

In the early 1950's, the German engineer Ulrich Finsterwolder developed, a way of erecting prestressed concrete cantilever segment by segment with each additional unit being prestressed to those already in position. This avoids the need for false work and the system has since been developed,

Whether created in -situ or using precast segments the balance cantilever is one of the most dramatic wore of building a bizidge. Work stands with the construction of the abutment and piers. Then, from each pier, the bridge is
constructed in both direction simultaneously, In this way, lead pier remains stable-hence (balanced '-until finally, the individue structural. \therefore elements meet and is connected together. In every case, the segments are prognessively tied back to the pier by means of prestressing fandom on bans threaded or bon thnoug each unit. Integral Bridges
is deciding when of the difficulties in designing any strive thetcule movement as the s to sun and contracts during the cold it winter. Expansion pond in bridges are notoriously prone to leakage. Water laden arts road salts can then reach the tips of the piers and the abutments, and the can result in corrosion al all reinbor cemed The expansive effects of rust can split concrete apart. In addition, expansion joints and bearings are an addition of cost so more andmone bridges ane being built orthout either Such structures called integral bridges can be constricioted orth all types of concrete deck. They are constructed ait their decks connected directly to the supporting piers and abaitnents and with no provision in the form of bearings of expansicol joint, for thermal movement e Thermal movements of the deck is accommodated by flexure of the supporting piers and horizontal movement of the abutment, with elastic compression of th surrounding soot -

Already used for length e unto 60 m , the integral bridges is becoming increasingly popular ar engineer and designers find othercoays of dealing with thermal movement. lable-stayed bridge: For really large span, one solution is the cable-stayed bridge. These types of bridges fire f developed in wet Germany, They consists of cables provided above the deck and are connected to the towers. The dick il either supported by a number cables meeting in a bunch at the tower or by joining at drifbernent levels on the tower. The multiple cables would bacelcties smaller distance betoer points of supports for the deck ginger. Thic reest in reduction of structure depth. The cables can arrange in one place tor two print plane. The two plane system regyines additional width to accommodate the tourers and deck anchonages. singly plane systems requeiner less width of deck. When
all elements are concrete the design consists of supporting town carrying cables which support the bridges from both sides of the tower. Mort cable-stayed bridges are bill using a form of cantilever construction which can be either.ingitu of precast

The cable stayed bridges are simitar to suspension, bridges except that there are no suspenders in the cable stayed bridges with decking. No special anchorages is requinected for the cables as increase of suspension bridges because the anchorage at one end rs done in the gender and at the other on top of tower. The cable-stayed breoges have been bound economical for up to span 800m. How never due to cantilever effect their ofeffection is rather high and hence they are not preferred for very long span in matwaye.
suspension bridges:
Concrete plays an important pant in the consinuction of a suspension bridge suspension. bridge are ideal solution for bridging gaps in hilly areas because of their construction techno. and capacity of spanmeng lang spans gaps. There will be massive foundations, us wally embedded in the ground that supports the weight and cable anchorages. The cables takes shape ot cadenany between two points of suspension. The flooring of bridge supported by the cable by vortue of tension developed, in its cross section, The vertical members are known as suspenders are provided to transfer load from bridge floor to suspension cable, there will be the abutments, again probably in mass concrete, providing the vital strength abel eiboify to resist the enormous forces and in addition the slender superistoluctane carrying the upper ends of the supporting cables are also generally made from reinforced concrete.

Typical deck, through and seme-through type trues
bridges.
(ii) Through Types Bridge: - The carriageway rest at the bottom level of the main load carrying member. It the through type plate girdler bridges, the roadway or railway is placed di level of bottom flanges. In the threblgh type truss girder. bridgo, the roadway or railway ic placed at the bottom chord level. The bracing of the fop flanges or lateral support of the top chord under compression is al so requen
(iii) Semi through Types Bridge:-
The deck lies in between) the top and the
bottom of the main load carrying members. The bracing it the top thanges on top chord under compression is not done and part of the load carrying syetem project above the bor level. The lateral rectraints in the system is obtained usually by the U-frame conction of the vertical and cross beam acting together.
concrete bridges.
They can be divided into the following main classes
stiffened suspension bridges
(1) Unstitfened suspension bridges
(2) Stiffened suspension bridges

Un-stiffened suspension Bridger: In case of un-ctiffened suspension Bridges the moving load is transferred into direct to the cables by each suspender. These are used for light construction such as fort bridges forest train structures etc. Where span is very long and the ratio dead to moving load intensity is to great to render stiffening unnecessary,
stiffened suspension Bridges. In stiffened type suspension Bridges moving loads are transformed to the cables through medium of trusses called stiffening girders. The stiffening girder assists the cables to become more rigid and prevent change in; shape and gradient of roodway platform. If is therefore adopted fur heavy IRC Bridge loading:-
controlled by the public roads in India are managed and for roads fo be designed as per standards bridges to be construct euthoretier. For highway ar edger standards set up by stand and watained in the indian Road congreer (1.R.C) specifications ane code. In India highway bridges ale designed in accordance wight code. 1 Inc bred coors QRC-6-1966-section II gives the specifectionc bred ph for the various loots and strueser to be considered in bridge design, There ane three types of standard loadings bor which the bridges are designed namely.
(a) $\mathbb{R}^{2} C$ class An loading
(b) $1 R C$ class A loading
(k) RC class B loading

IRC class AA loading'.
IRC class $A A$ loading consists of either a tracked vehicles of to tonnes or a wheeled exhicle of 40 tonne with dimension. as shown in Fig. The unite in the figure are mm for length and tonnes for load. Normally bridger on national highway and state highway are designed bor these loading. Bridges designed bor class AA should be checked for IRC elas A loading also, since under certain condition larger stresses may be obtained lender claus A 10 ading. Sometiones class FOR loading given in the Appendex-1 of IRC 6 - 1965 sectional can be used for IRC class AA loading clan 70 Rloading i's not eliscussed future her

IRC class A loading: IRC class AA loading-wheeled vehicle vehicle consists if a wheel load traidic composed on heaviest type commence two trailer of specified axle spacings. This loading is normally ace and on all roads on which permasisent bridges are constructed.

1R.C clos A and class B loading
IRC class B loading is adopted for temponany d Aructure and bor bridges is specified areas, For class A and class $B 10$ ading res reader is rebertied to 12G6-1966-section II.

Culverts:- A culvert is defined as small bridged constructed error over a stream which remains dry most part of the year It is across a strain mage work having to hal length not exceeding on between faces of abutment
Types of culverts:-
The following are four different types calvert

1. Arch culvert
2. Box culvert
3. pipe culvert
4. slab culvert
5. Arch culvert :

An arch culvert consists of abutments wing walls, arch parapets and the foundation. The construction materials commmily used are brick work or concrete. Floor and curtain wall many may not be provided depending upon the nature of boundetive sort and velocity of HOw. A typical arch parapet is chowsinfig.

Arch eulvent Fig $6-1$
2. Boy culvert:In case of box culvert the rectangular boxes are to nomen
of masonry, R cc. or steel. The $R . C-C$ bone culverts are very common ald they consists of the following two component (i) The barrel or box section of sufficient length of accommodN the roadway and the kerbs
(2) The wing walls splayed at 45 for retaining the embankment and also guiding the foo if water into and oust pet the barrel.

Fig 6-2 shows an R.c.C. box culvert with two opening. Following
points should be noted,
(i) Foundation: The box culverts prove to be safe where good foundation are easily available.
(ii) Heishli. The clear vent height ie the vertical distance between top and bottom of the culvert rarely exceeds 3 meteni
(ii) Sop:. The box culvert are provided singly or in multiple units with individual span exceed about 6 m or so. it requires thick section which will make the construction uneconomical
(iv) Top:. Depending upon the site condition, the top level of box may be at the lever road level or it can even be at a depth below road level with filling of suitable material.
3. Pipe culvert:

They are provided when discharge of stream is small or when sufficient headway is not available. Usually one or mons pejes of diameter not less than 60 cm are placed side bysids. Their exact number and diameter depend upon the discharge and height of bank. For easy approach of water splayed type wing walls ane provided info As shows o Hume pope culvert of single pipe. The pipes can be built of masonry. stone ware, cement concrete, cast iron or steel. Concrete bedding should colo be given below the pipes and earth cushion of sufficient thickness on the top to protect the pipes and their joints. Free economic reason road culverts should have non-pressure heavy duty popes of type is I class TP conforming to 15:458-1961. As tar possible the gradient of the pipe should not bee lees than 1000 .

A slab culverts consists of stone slabs or R.C.c. slab suitably support on masonry walls on either side. as shown an fig. 6.4 . The slap culverts of simply type are suetable up to a max ${ }^{n}$ span of 2.50 mors so However the R.c.c.culvents of dick sf ab type can economically be adopted up to span of about 8 m. However the thickness of slab and dead weight may sometimes prove to be limiting factors for deciding the economical span of this type of culvert,

The construction of slab culverts in relatively simple as the frame work can easily be arranged reinforcement can be suitably placed and concreting can be done easily. This type
of culverts can be used for highway as well as Raceway bred. Depending upon the span of culvert and site condition g they abutments and wing walls of suitable dimension may be provided. The parapet or hand rail of at least 750 mm height. should be provided on the slab to define the width of culver: lanceways:

A road causeway is a pucca dip which allows floods to pass oven it. If may or may not have openengor vents for low water to How, if it has vent bor low water to flow then it io known as high level causeway or submersible bridge otherwise a low level causeway.
Types of Causeway
(A) Low level causeway: \quad It ic also known as Irish Bridge. The beds of small rivers or stream, which remain dry bor most pant of the year aregenenally passible without a bridge. This involves heavyearts works in cutting for bridge approaches. Banks of such types of streams are cut down at an easy slope. For streams if rivers in plains having sandy beds. It is of ten sufficient to lay bundles of grass over and across the sandy track. The bundles may be of 2.0 to 25 cm in diameter whose ends ar u secured by longitudinal tascines pegged down by stakes

For crossings impointand from traffic point of view is essential to lay a metal or pucca paving of stone or brickset in lime mortar on a substantial bed of concrete. To prevent against possible scour and undermining a cut off or dwarf wall usually 60 cm deep on the upetream side and 120 to 150 cm downstinearn side is provided fig 5.3 . below show the details of a typical Irish bridge.

The low level causeway could be provided with openings formed by concrete Hume pipes if these is a continu flow stream during the monsoon periods.
(B) High level Causeway:

A high level causeway ic submersible road bide designed to be overtopped in floods. It formation level is toped in such a way as not to cause intervicption to traciffic during foods for more than three days at a time not for mons than ax times in a year. A sufficient numbers of opening are provided to allow the normal flood discharge to pass through them with the required clearance. They are provided with abutments and piss, boons and slabs on arches to form the required number of operinge. The slope of the opproache is rept as $\operatorname{Lin} 20$. When the vain slope of the . Scanned by CamScanner
stream bed is sift the aprons could be of concrete or harder masonry upto a certain distance. Similarly, the road can be formed of a cement concrete slab or stone blocks eat in cement mortar. A typical type of high level causeway is shown in fr.. if rating are provided in the bridge, they should be of collapsibil type Temponany causeways wed bor an emergency military operations bine formed either by using timber stringers and planking over cribs used as pile rs by constructing a culvert using piper:
Ex. 361 A bridge has a linear waterway of 150 metres constructed across a stream whose natural linear waterway is 220 metres. If the average flood discharge is $1200 \mathrm{~m}^{3} / \mathrm{sec}$. and average flood depth is 3 metres, calculate the attic under the bridge
Ans The natural waterway area at the cite

$$
=A=220 \% 3=660 \mathrm{~m}^{2}
$$

Contracted waterway area $=0=150 \times 3=450 \mathrm{~m}^{2}$
$=V A$ The velocity of approach $=V=Q / A$
Here, $Q=$ Flood discharge $=1200$ Here, $Q=$ Flood dnischange $=1200 \mathrm{~m}^{2} / \mathrm{sec}$.

$$
V=1200 / 660=1.83 \mathrm{~m} / \mathrm{sec} \text {. }
$$

Using Malesionth formula l. the afflux can be given b ${ }^{2}$

$$
\begin{aligned}
& \text { nth formula/ the afflux can be given by d } \\
& \begin{aligned}
& h_{a}=\left(\frac{v^{2}}{17.9}+0.015\right)\left\{\left(\frac{A .83}{17-9}\right)^{2}-1\right\}=\left(\frac{660}{450}\right)+ \\
&=(0.187+0.015)\left\{(8601450)^{2}-13\right. \\
&=0.202 \times 1.15=0.232 \mathrm{~m} \\
&
\end{aligned}
\end{aligned}
$$

Ex ,3.2 Calculate flood discharge of a river at the soriedge site. Given the following data:
(ii) Undrestrubted width of river $=80 \mathrm{~m}$
(ii) Linear waterway of the bridge $=60 \mathrm{~m}$
(GT) The upstiveam Arpth of water = Lm
(iv) The downstream depth of water = 3.2 m

Sol") Afflux = Upstream depth of water - D/s depth of water

$$
\begin{aligned}
& \qquad h=h_{1}-h_{2} \\
& \text { or Afflux }=4-3.2 \\
& \text { or } h=0.8 \mathrm{~m} \\
& \text { Therefor } \frac{h}{h_{2}}=\frac{0.8}{3.2}=\frac{1}{4}
\end{aligned}
$$

This is a borderline case. where afflux is just equal to $1 / \mu^{\prime \prime}$ of the downstream depth of flow. Therefore, both broad enexfec weir and drowned orrific formula will be applied and the higher value of the two be taken as Hood discharge.

Broad Crested weir formula

$$
\operatorname{Lin}_{Q=1.70 C_{w L} L}\left(h_{1}+\frac{v^{2}}{2 g}\right)^{2 / 2}
$$

Here, $L=$ Linear waterway $=60 \mathrm{~m}$

$$
\begin{aligned}
& L=\text { Linear water way }=00 \mathrm{ch}=80 \mathrm{~m} \\
& W=\text { unobstizucted wed } \\
& h_{1}=4 \mathrm{~m} .
\end{aligned}
$$

$l_{W}=0.98$ from table 3.1.c
If $e \mathrm{w}=0.98$ from tablecty approach, then discharge just U / s af the bridge

$$
\begin{aligned}
Q & =N \times h_{1} \times V \\
& =80 \times 4 \times V
\end{aligned}
$$

Therefore. $Q=320 \mathrm{~V}$.
The discharge through bridge

$$
\begin{aligned}
& \text { change through bridge } \\
& Q=1.70 \times 0.98 \times 60\left(4+\frac{V^{2}}{2 \times 9.8}\right)^{3 / 2} \\
&
\end{aligned}
$$

Ex.3.4.1 A bridge is proposed to be constructed across an alluvial stream carrying a discharge of $300 \mathrm{~m}^{2} / \mathrm{sec}$. Ascuming the value of silt factor 1 , determine the maximum scour depth when the bridge consist e of
(大) Two spans of 35 m each, (τ^{-7}) Thine span of 30 m each
8017 Regime surface wroth of the stream is given by

$$
W=4.8 \sqrt{Q}
$$

Here, $Q=$ Flood discharge $=300 \mathrm{~m}^{3} / \mathrm{eec}$.

$$
W=4.8 \sqrt{300}=83 m!
$$

Case. I Since the proposed bridge consists of two spans of 35 m
Therefore, $L=2 \times 35=70 \mathrm{~m}<\mathrm{W}$
$i . e$ the waterway is" contracted. Normal scour depth can be even by eqn3.4. 2

$$
\begin{aligned}
& d_{1}=a(w / L)^{2.51} \\
& m_{0} \text { dent } \leq 0.47
\end{aligned}
$$

(Hern, $d=\begin{aligned} \text { Regime depth } & d_{1}=0.473(\theta / f)^{3 / 3} \\ & f=\text { silt factor }=1.1\end{aligned}$

$$
\begin{aligned}
& f=\text { silt factor }=1.1 \\
& d=0.473\left(\frac{300)^{1 / 3}}{1.1}\right)^{3.020}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad d_{1} & =3.02\left(\frac{831}{70}\right)^{0.61} \\
& =3.1 \mathrm{~m}
\end{aligned}
$$

As the bridge has got two spank, therefore if will have one piet and two rend support
piers, thereto the maximum scowler depth will occur at noses of

$$
\begin{aligned}
\text { Maximum scour depth } & =2 d \\
& =2 \times 3.1=6.2 \mathrm{~m}
\end{aligned}
$$

case. 11
Since the bridge consist of three spans of 30 m each

$$
L=90^{\circ}>\omega
$$

Therefore, Normal scour depth = Regime depth or,

$$
\begin{aligned}
& d=0.473(\theta / f)^{1 / 3} \\
&=0.472\left(\frac{300}{1.1}\right)^{1 / 3}=3.02 \mathrm{~m} \\
&
\end{aligned}
$$

The maximum scour depth in the ease too will occur at noses of pier.

E 3.3 .1 The following are the costs of one piet and one supersotrwes spar of multiple span bridge for various spar lengths. The colt of sepperet ructure spar excludes the costs of raring
system Calculate the economic span.

system. Calculate the	$4 \cdots$	8	16000	24500
span in metre's	1700	7000	16000	23600
supervetriveture Ros.				

substructure cost Rs. 22.200 super-stirlictune varies as the
sol ${ }^{\circ}$ Assuming that the cost ob super st of variation an bor varus. square of the span per equation 3.3 .1
value of span is as per equal, $a_{1}=100 / 6=106.2$
for $4 \mathrm{sm} \mathrm{span}, a_{1}=7006 / 64: 109.2$
for sm span, $a_{2}=70006$
For $12 \mathrm{mspan}, a_{3}=16000 / 144=111.1$
For 15 m span, $a_{4}=24500 / 225=109.0$
An average value of this constant of variation a,

$$
a=\frac{a_{1}+a_{2}+a_{3}+a_{4}}{4}=\frac{106.2+109.2+111+109.0}{4}=108.875
$$

The average cost of a pies
Therefore,

$$
\begin{aligned}
& =\frac{\text { pies }}{}=\frac{22200+23200+23000+23600}{4}=23000
\end{aligned}
$$

Economic span, $f=\sqrt{\frac{p}{\alpha}}=\sqrt{\frac{25000}{108.857}}=14.6 \mathrm{~m}$

Afflux:
When a bridge is constructed, the abutment and pie structure as well as approaches on either side cauls the rear reduction of natural waterway areas. The contraction of stream is elesirable because it lads to treorngle saving in the cost especially of alluvial streams whose natural suntre is too large then that required for stability. Therefore to carry maximum Hood discharge wether bridge portion the velocity under the bridge increases.

Atfiuy should be as small as posits and generally shall not exceed 0.6 m . When the foods spread over the banks is large, use of average velocity for calculating the afflux will give an erroneously low afflux In such caver, the velocity in the main channelycompert. should be used. The permissible afflux well be governs by the submergence effects on adjorneng stinketuri fid etc. upstream sids. Afflux is catchmented by the following formula.
(a) Aftivy at H.F.L by Moleswonth formula (in case of nigh level bridge)

$$
\begin{aligned}
& \text { level bridge } \\
& \text { Afflux }(h a)=\left[\begin{array}{l}
\frac{v^{2}}{7.86}+0.0153 \\
\text { here } v=\text { Mean velocity in } \mathrm{m} / \mathrm{c}
\end{array}\right]\left[(Q)^{2}-1\right]
\end{aligned}
$$

where $v=$ Mean velocity in m / c.

Railway Engineering objectives ofong.
Not Railway Were first introduced to India in the year 1853
2.- First from Bombay to Thane.
3. On 23 April 2014 , Indian Railways introduced a mobile app system to track schedieles.
4. What are the advantages of railways:
(i) Economic Advantages
(ii) Political Advantage.
(iii) Social Advantage.
5. What are the classification of Indian Rat way

Three class
(T) class I-Rarlways with gross annual earning of overs
(ii) Class-II - Railways with Re. 50 lakhs $(R D, 50,00,000)^{\prime}$

- Class-II - Rarlwaye with gross annual earnings of between Rs. 10 and 50 lakh
(Iii) class-111-Railways with gross annual earnonge under

6. The finished or complete track of rartwag tine is commonly known as Permanent Way.
I If consists of 3 parts (a) Rails. (b) sleeper, (c) Ballast
7. In India, the gauge of a railway track i ic defined as the clear e minimum perpendicular distance between the inneribaces of the two rails?
8. 1 lame the ditbenent types of gauge and their length
(a) Broad Gauge: Width 1876 mm to 1524 mm
(b) standaing flange: Width 1435 mm and 1451 mm .
(c) Meter Gauge: Width $1067 \mathrm{~mm}, 1000 \mathrm{~mm}$ and 915 mm
(A) Narrow Gauge: Width 762 mm and 610 mm .
9. What are the suitability of these gauge" conditions ?
Ans Ia Traffic condition: $\rightarrow 16$ the intensity of traffic on the tray is likely to be more, a gauge wider than the standard gauge is suitable.
10. Development of poor areas. \rightarrow The narrow oranges ane laid in certain parts of the world to develop a poor bize and thus link the poor area with the outbids developed world 3. Cost of track \rightarrow The cost of railwag/rack is blurectly proportional to the width of gauge. Hence, it the funds available is not sufficient to construct a standard gang? a meter gauge or narrow gauge is preferred rather that to have ho railways at all.
4 . Speed of movement \Rightarrow The speed of a train is a buncticy of the diameter of whects which in turn is lumeted by the gauge. The wheel diameter is us rally about 0,75 tide the gauge width and the, the speed of a fricier almost proportional to gang. If the higher speeds ane to be attained, the BG track is preferred to the M,G OnN.Githe 5. Nature of country: \rightarrow in mountainous country, itisadrisal to have a narrow gauge of track since it is more flepre and can be laid A a smaller radius on the curer. Thes is the reason why some important railways, coverup thousands of kilometer, are 1 aid with a gangs as narrow as 670 mm .
11. What are the function of rails?

Tins y Fo transmit the moving toads to the sleepers
\rightarrow To provide strong, hand and smooth surface fouthe train journey
\rightarrow To bear the stresses developed in the track due to temperate changes and loading pattern

- To serve as lateral guide to the running wheels.
\rightarrow To resist breaking forces caved Hue to stoppage of trace.

12. What are the requirements of an ideal Rail.?

Ans \rightarrow The rat section consists of three components: head, wets and bort If should be designed for optimum nominal weight to provide for the most efficient distribution of metal on ats various components.
\rightarrow The bottom of head and top of the fore should $b i$ given such shapes that fish plates can easily be fitted.
ne The C.G. of the rail section should be located very near to the centre of height of rail so that maximum tensete and compressive stresses ane mane maximum
same
\rightarrow The depth of head of rail should be sufficient to allow fore adequate margin of vertical wear.
\rightarrow The rail should possess adequate lateral and vertical stiffness same.
\rightarrow There should be balanced distribution of metal in the head web and boot of rat so that each of them is able to bulbil its assigned function.
\rightarrow The surface of rat table and gauge. face of rot should be hard and should be capable of resisting wear.
\rightarrow The thickness of web of rail should br sufficient to take safely the load coming on the rack.
13 What are the types of rail section:
Ane (a) Double headed rats, (b) Bull headed rails. (c) Flat booted rate
14 What is the double headed rats) Ans These were the rails which were used anmb-bell section. The Where double headed and consisting of a when the head was idea behind using these rats was that when can be invented and rewed worn out in course of time, then were formed in the lower But as time passed indentation smooth running over the suicbace at the table due to which smooth running
top was impossible. top was impossible.
Is What is bull headed mats)
Ans in this type of raid the head was made alitfle thicker and stronger than the lower part by adding more metal so il, 80 that it can withstand the stresses.
16 Flat 800 ted :- These rails are also called as vignole's razed. Initially the flat footed rails were fixed to the sleepers directly and no chains and keys were required, Later on due to heavy train loads problem arose which lead to steel bearing plate between the sleeper and the rave at rail joints and other important places these one the rats which are mosfcommos used in india.
17 What is length of rats?
Ans from the consideration of strength of the track maximum posse bile length is advisable as of will reduce the number of the jointer less number of fittings and fixtures and economical maintenance. But in practice the following factors are considered to decide the length of rails.
(E) Ease to transportation
(z^{-}) Reasonable cos l of manufactur
(i it) Ease in loading into the avail able wagon
(iv) Development of temperature stresses.

IS What is rant joints necesiany to hod the adjoining end to the

Railway objective Questions
Not In a shunting signal if the red band is inclined at 45° it indicates proceed.
Now The nominal size of ballast used for points and crossings is 25 mm .
Hor The standard length of rail for Brock Gauge and Meter Grew are respectively $13 m$ and 12 m .
No 4 Number of keys used in CST-9 sleeper is 2
No 5 Gauge is the distance between running faces of raid.
No 6 Normally the limiting value of cant ic (where G is the gang) G/10.
Not. Tensile strength of steel weed in rails should not be less than 760 MPa
Nos Largest dimension of a rail is it height.
Nog Fork the purpose of frack maintenance, the number of turn out equivalent to one track km ane 10.
Nolo Due to battering action of wheels over the end of the Traits, the rails get bent down and are deflected at end These raves are called Hogged rails.
Noil Mellow bight hand signal indicate proceed cautiously.
No12 Consider the follow wing statements about concrete stexsery.

1. They improve the trod modulus, 4. They maintern th
consider the follow wing statements.
sates

Automatic signalling system results in 2 higher efficient (3) avoidance of

Fol. Minimum composite sleeper index pres-cried on Indian Raslway, for a track sleeper is $\frac{783}{h}$
1015 The distance through which the tongue rats moves laterally at the toe of the swetch for movement of trains is called throw of the switch.
Note The type of bearing plate used in all joints and on curves to give better bearing area to the rails is mild steel canted bearing
plate. plate.
Vol Standard site of wooden sleeper for Broad Gauge track is $275 \times 25 \times 13 \mathrm{~cm}$.
Vols Maximum value of throw of switch for Broad Gauge track is 115 mm .
Nov The purpose of providing fillet in a rail section is N Avoid the stress concentration.
No 20 A Broad Gauge branch line takes off as a contrinany Flexure from a main line io the superelevation required for branch line is 10 mm and cant deficiency is 75 mm , the superelevation to be actually provided on the branch line will be 65 mm .
No 21 The sleeper resting directly on girder are fastened to the top range of girder by hook bolts.
No 22 A triangle ic used bon changing the direction of engine.
1123 Cant deficiency occurs when a vehicle travels around a curve at speeds higher than equilibrium speed.
No 24 The cross-sectional area of 52 kg tat footed rat is is 6615 mm .
025 Which of the following mechanical devices is used to enskne that route cannot be changed while the train ie on the point even after putting back the signal 2 rock bar.
1 Vo26 Switch angle depends on heel divergence, length of tongue nail.
$1+27$ The reception signal is outer signal, home signal,
No ts in a scissors cross-over, the crossings provided are 2 obtuse angle crossing, 6 acute angle crossing.
No 29 Which of the following factors govern the choice of the gauge?
physical features of the country.
No 30 The formation width for a rail way track depends on the
(1) type of gauge, (iv) number of tracks to be laidsede by side.

No zs study the following efatements regarding creep.
(i) creep is greater on curves than on tangent railway trace (iv) creep is new rails is more than that in old rails.

No31 Study the following statements regarding creep (19) creep is greater on curves than on tangent railway track
(41) creep is new rails is more than that in old rate.

No 32 Creep is the longitudinal movement of rail.
No 33 Number of cotters used in CSF-9 sleeper is 4
$\frac{\text { No } 34}{\text { I }}$ One elegree of curve is equivalent to (where R is the radium of curve in meters) $1750 / R$.

- N035 The rail is designated by its weight per unit length.
$=$ No36 Lead of crossing is the distance from the heel of the sootith to the theoretical nose of the crossing.
No 37 The treadle bar is provided near and parallel to innen io d of one of the rats.
No 38 A trade bar is used for interlocking points and signal.
$\pm \frac{1039}{1}$ Flange -way clearance is the distance between the adjoint Faces of the running rail and the check rail near the crossing
I Nolo The total gap on both sides between the inside edges of whet Hanges and gauge baces of the rail is kept as 19 mm .
I No ll Heel divergence is always greater than flange-way cleanano
$N 042$ on a single rail track, goods than 1, s loaded with heavy roo g
: material run starting from ' A ' to ' B ' and then emptor wagons sw o
- direction of A to B.
- $\frac{18}{24}$ staggered joints are generally provided on curves.
pu 4 The side slope of embankments for a natway track is generally
Aus as $2: 1$ Aiken as 2:1.
Ho us Loose jaws of steel trough sleepers are made of sprung stael
$=\frac{14046}{\text { Of sleeper a per rat length is } 20 \text {. }}$, On sleeper per rat length is 20 .
Wooden sleeper is prev beaned on joint.
Nous Vertical curves are provided where algebraic drifferend between grades is equal to on monet than cm $/ \mathrm{m}$.
No 49 if a is the angle of crossing. then the number of croesm
'H' according to right angle method, is given by cot (a).
Nos crushed head one of the following nd i failuier i cased by loose fish bolts at expansion point.
Nos 1 The main function of a fishplate is to join the twonal. together.
No 52 For a sleeper alensety of $(n+5)$, the number of slue Scanned by CamScanner
required for constructing a broad gauge railway track of length 650 m is 900.
+653 A train is hauled by 2-8-2 locomotive wroth 22. 5 tonnes and on each driving axle. Assuming the coefficient sf rail wheel friction to be 0.25 ; what wore be the hauling capacity of the 10 comotive 22.5 tonnes.

The limiting value of cant gradient for all gauges is 1 in 720 . loss The correct relation between wive lead (CL), switch lead (SL). and lead of crossing (L) is given by $L=C L-S L$.
$N 056$ The object of providing a point lock is to ensure that each seritch is correctly set.
$\sqrt{057 \text { flat mild steel bearing plater ane used for points \& crossing }}$ in the lead portion
No 58 The height of the rail for 52 kg rat section 156 mm . Head width of 52 kg rail section ; 67 mm .
1059 Head Largest percentage of material in the rail is in its head.
No60 LA train is hauled by 4-8-2 locomotive. The number of driving wheels in the is locomotive is \&
N 62 Note developing thinly populated anear, the correct choice of gauge is Narrow Gauge.
No 63 The slipping of driving wheels of 10 comotive on the $r a i l$
surface causer whee burns
No 64 Near of rats is maximum in weight of tangent track. At points and crossings, the total number of sleeper of sleeper for I in 12 turnouts in Broad Gauge is 70.
Nob 6 For a 8° curve frack divengeng from a main curve of 5° in a 0 a opposite direction in the layout of a broad gauge yang, the cant to be provided for the branch track for maximum speed of $45 \mathrm{~km} / \mathrm{h}$ on the main line and ' $G^{\prime}=1.676 \mathrm{~m}$ is Permitted cant ofeficiency bor the main le ne $7.6 \mathrm{~cm}-0.168 \mathrm{~cm}$.
No 67 Normally maximum cant permissible is meter Gauge is 90 mm No 68 Ion 8% most commonly used bon good traci on Indian fallowing $N 069$, When semaphore and warner are thstalled on the same post, then the stop indquation is given when both arms ane horizontal Nett Traverser's used to franeffer the wagons or locomotives to and boom parallel Hacks without any necessity of shunting?

Not At bridge site water flows from cut water to ease water No The length of bridge is $(n * l) \times b+(n-1)$ if distance below, two pier is called 2 , No of span $=n$, width of pier $=b$ length. bridge $=(n * l)+(n-1) * b$
Nos Vertical distance between designed high flood level allowing afflux and to allow vessels t emos the bridge free boong
Nolo The Economic span of bridge is 14.5 m if the Average cost of pier (p) is $R_{2} 23000$ and Average value of constant (a) ic 109. $N 05$ A bridge to convey water over i an obstacle, such ar a river Aqueduct
Nos A bridge composed of several small spans for crossing a valley dry or wet and viaduct.
No 7 A road causeway is a pucca op which allows flood to pass over it. If may have opening or vents for low mater to flow submersible bridge.
Nog Endsupporf of a bridge substructure is known as abutment.
= Ito For general understanding the span $<8 \mathrm{~m}$ is known as culvert.
Nor For general understanding the span 81030 m is classifies as Minor bridge.
Noil For general understanding the span 30 to 120 m is classifies
majoie bridal. as major bridge.
No12 For general understanding the span 7120 m is classified o long span bridge.
No13 Based on your engineering skill suggest best suitable bridge For deep valley provident shall be Economical and I git in weight suspension bridge.
No14 Rocker bearing ane suitable for spans unto more than 20 in No 15 Fixed plate beating. plates ane suitable for spans upto 12 m . Notes As fur as possible the alignment of a bridge should be squall Not

$$
\begin{aligned}
& \text { A. Causeway } \\
& \text { B. Culvert } \\
& \text { C. Valuable bridge } \\
& \text { D. Bascule bride }>4 \text {. Span less than sm over any valley }
\end{aligned}
$$

No18 R D. Bascule bridge >4. span less than 6 m
No19 Tacker bearings are suitable for spans unto monet than 20 m . No 20 The type of Elastomeric bearing .
No 21 In a bridge construction bearing is Neoprene ruben berle In a bridge construction the expansion joint is provides Scanned by CamScanner
having width 25 mm .
Nog Erection of steel girder for bridge, the site having depth of water in the river is shallow, suggest suitable method erection by staging.
No 23 Erection of steel girder for bridge, the site having deep water in the river, suggest suitable method erection by troating Depth of water in the river is mons
No 24 Forces acting on substructure of bridge earth pressure, Buoyancy; uplift pressure.
N025 Forces due to geometry and atmosphen tempenatiene stizesses, erection stresses, seimic loads.
No26 Forces acting of super structure and substructure Deadioad live load, wind load.
No 27. Suggest the suitable method for weakening of foundation of bridge strengthening by underpinning
No ts Suggest the suitable method for scouring in bridge repairing of foundation
No 29 Assassment of safe load carrying capacity of bridge the methen one Theoretical method, correlation method, load testing.
Nose To know the fatigue life of bridge, the test required is stress-histony test.
No 31 (A) Behaviour Test
(1) Monitor the caver of damage
(B) Proof Test
(C) Ultimate load testy
\rightarrow (2) determine ultimate 10 ad carryeng capacity
(D) Diagnostic test L
(3) Verify the results of any method: of exnalyers
(4) Test done on new structur

N032 To stabilize the river channel along a certain alignment with certain alignment cross section is known as River training.
U6033 The objectives of river training is
\rightarrow To prevent the river from changing its course
\rightarrow To prevent from changing its chose section
\rightarrow To prevent flooding on sherrounding area
\rightarrow To provide mininkum depth bon navigation purpose
Vary In river training work bor bridge the spur is constructed transverse to rivet Howe.
No 35 In river training work for bridge the vibra-Hotation is used when soil is cohesiorleks.
No36 1 n river fraingwork for bridge, pitched islands is artificially No created island, protected by stone.

Nat and Nee was the first Bridge Engineer in ancient time.

No38 The linear measurement of water way between the two edge, of blow of water perpendiculan to the direction of abutment eng, Linear waterway The unobstructed area of the river through which water bro.
Nos 9 The unobstructed area of the river through which water nor: at the bridge site is catted natural water way
Nous The free board for high lever bridge should not be 600 mm
No 41 The full form of 1 BMS Indian Bridge Management system
$\sqrt{N 0} 42$ The depth of bridge foundation below maximum seouen dept is called grip length.
No 43 The most economical span length in bridge is cost of super structure $=$ cost of substructure
Nous A Bridge is provided when the normal food discharge is relatively smaller than the high flood discharge and the blocky of the traffic for smaller duration of high floods is economical less important than the cost of high level bridge submarsiub bridge!
N NoUs The end of pier in up stream side is known as cut water.
In a Arch bridge having number of span, the baiture of an arch one to earthquake can be localized of it is provided with Abutment pier after every fourth or fifth pier.
vo 47 Abutment with return wing wall also known a U-Abutment. Nous For Bridges of National highway and state highway the class of loading is considered as per IRC AA
Ne 49 in a proof testing of bridge. the load shall be applied in stage if $\mathrm{w} / 4, \mathrm{w} / 2,3 \mathrm{w} / 4$.

Lad Mr. W. Simms, the consulting Engineer to the Government of Indra recommended the gauge Dore Indian railways 1.676 m as a compromise gauge
162 If absolute levels of rails at the consecutive axles A, B and C separate: by 1.8 meters are $100.505 \mathrm{~m},-100.530 \mathrm{~m}$ and 100.525 m respectively, the unevenness of rails, is 0.065 m
103 A CST. 9 sleeper consists of
\rightarrow two inverted triangular pots on either side of rail seat \rightarrow a central plate with a projected key and boy on the top of plate \rightarrow a tie bar and 4 cotters to connect two cast iron plate.
\rightarrow a single two way key provided on the gauge side to hold the rail to sleeper.
Ho 4 charles Vignoles invented the flat footed rats in 1.836.
$\$ 105$ To design a cross-over between parallel fracks, the required components are: two switch points. two acute angle crossing and tour check raids.
Nos The first Indian railway wal laid in 1853.
Not. The weight of the rats depends upon gauge of the tracks, speed of trains, spacing of sleepers, nature of traffic
Nos pickup correct statement from the following
\rightarrow Rails are directly laid over, hard wooden sleepers and bred with spikes.
\rightarrow Adzing is done on hard wooden sleepers
\rightarrow Bearing plates are used on soft wooden sleeper (All the above
\rightarrow chains are used for bull headed rails.
Nog Pickup the incorrect statement firm the following
\rightarrow fish plates fit the underside of the rail head
\rightarrow Fish plates bit the top of the rail tor t
\rightarrow Fish plates ft the web of the, rail section that of the rail section.
Not Minimum depth of ballast prescribed of B.G. trunk lines of Indian) Railways, is 25 cm .
Doll Boxing of ballast ic dons at the rails.
Fold Best ballast contains stones varying in site from $2.0 \mathrm{~cm}+5 \mathrm{~cm}$
No 13. For holding a rail in position, no chairs ane used for flat footed
$\frac{\text { Harts }}{\text { Nor Distance between the inner rail end check rail provided on sharp }}$ curve r is 44 mm .
Nets coal ash (o rcinder) is used in initial stages of a new construction of railway bor wooden sleepers.
Not Pot sleepers are in the form of two bow placed under each rail and connected together with a fie bar.

Nowt In railways a triangle is mainly provided bor cringing d, of engines through 180°
Hols A kink is made in stock rats, a head of the toe of switch af, distance of 15 cm .
Nog if L is length of rail and $\frac{R}{}$ is the radius of a curve the reselir h bor the curve, is $h=\frac{L}{E R}$
No 20 Rails are bent to correct-curvatune it the degree of curse is move than 4°.
No 21 In Indra the rails are manutactured by open hearth pron duplex process.
No 22 Rail section finest designed on Indian railways, was don double headed.
No23. A scissors cross. over consist of pour pain ob points, sxacut angle crossings and two obtuse angle e nosing.
No24 To prevent percolation of water into formation, moonum is used as a blanket for black cotton soil.
No25 Distance between innerbaces of the Hanger, is kept slightiylu than the gauge distance.
No 26 Wooden sleepers used on the genders of bridges, are generally made of teak
NoS if L_{1} and L_{2} are the actual and theoretical lengths of a tongue rail, d is heel divergence and t is thickness of tongue rail alton the switch angle a is $\sin ^{-1} \frac{d-t}{L_{1}}$
Noose it D is distance between centres of two parallel track ot gavel then, total length of croes-cer (brim the point of commencenned
to the point of termination) worth an intermediate straight port" to the point of termination with an intermed
and N crossing ic given by $D N+G\left(3 N+\sqrt{1+N^{2}}\right)$
No29 If a 0.7% upgrade meet a 0.65% downgrade at a summit and the permissible rate of change of grade per ch (ain length is 0.0 ts the length of the vertical curve, is 14 chains.
Nose Overall depth of a dog spike, is 120.6 mm .
No 31. Best wood for wooden sleeper trace
No32 The rail section which is not used on Indian metre gauge trace it

No35 Maximum wheel base distance provided on Indian B.G. trace ${ }^{\prime}$ 6.096 m .

Vo 36 The tread of wheels is provided an ontwand slope or 1 in"
$\sqrt{3} 3^{7}$ On a straight railway track, absolute levels at point A on two rails are 100.550 m and 100.530 m and the absolute levels at point B 100 m apart are 100.585 m and 100.515 m respectively the value of twist of rats per metre run, is 0.5 mm .
N385 Bearing plates are used to tex Heat footed rails to the wooden steeper.
No 39 Safe speed (V) on a curve of radius 970 metres provided with two transition curves on Board Gauge, track is $132 \mathrm{~km} / \mathrm{noch}$ suspended. welded rail joint is generally
Ho us pickup the incorrect statement from the following \rightarrow sleepers hold the ratls at proper gauge on straight \rightarrow sleepers provide stabrity. to the permanent wag.
\rightarrow sheer act as an elastic cushion between rails and ballast \rightarrow sleeper transfer load of moving train to ballast.
\rightarrow None of thees
voloy2 It a is switch angle and R is radius of the turnout, the length of the tongue rail, IR $\tan 0 / 2$.
Nous The quantity of stone ballast required per metre tangent length, 'c $1.11 \mathrm{~m}^{3}$.
Nelly The type of switch generally used for B.G. and M.G. Traces 's over riding.
Nu 45 The difference in the length of two diagonal of a rail diamond

$$
\text { is } \quad 2 G-[\cos a / 2+\sin a / 2]
$$

No46 For flat poifom sleepers, maximum seize of ballast is 50 mm .
$\sqrt{047}$ Coning of wheels
\rightarrow prevent lateral movement of wheels
\rightarrow provide smooth running of trains
\rightarrow avoid excessive wear of inner faces of rail
\rightarrow All the above.
No 48 The sleepers which satisty the requirements of an ideal sleeper ar wooden siépen.
No 49 Arrangement made to divert the trains from one track to another is known as turnout.
Ne50 Al a rail joint, the ends of adjoining rails, are, connected with a pair of fishplates and 4 fish plater.

